Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W col17.z GAP library of groups Hans Ulrich Besche ## Bettina Eick, Eamonn O'Brien ## SMALL_GROUP_LIB[ 1768 ] := [ 591109030463729675, 806035653586366479, 1434205934887461978303, 6720249431851199, 1424802013287390687247, 1044758163717723582475, 4483055468880146745202311359, 4483055471618910363224899775, 31391371728570141815865535, 2519059094383861072658623, 10042592673637859519, 10042592673636810943, 17755303849598968135871, 10042592673652539583, 17755303849598983864511, 17755303849598982815935, 31391377206093581059621055, 1425070519228113619727, 455902324853519, 806035361542179599, 455902323804943, 455902339533583, 1045080370974578183947, 334337570508555, 591108807139004171, 334337569459979, 334337585188619, 2535676086171812316053695, 811202447767765183, 1434205931090726617279, 811202447766716607, 811202447782445247, 3796752138431, 3796767867071, 11874692130795421887, 2519049475657278868729871, 7874135354402964819971624927423, 7874135354400226056353602339007, 4453679482096945611542626495, 4483072081035724286881431743, 17760882522286188396735, 1434199582927651602623 , 805883500070701839, 590926571658809099, 2535664859512960699072703, 2535664857963886254489791, 17755300751451754594495, 1424807180081571037375, 5680197999263935, 257832255679, 189112779003, 458822967623871, 191 ]; PROPERTIES_SMALL_GROUPS[ 1768 ] := rec( isNilpotent := [ 4, 33, -35, 53 ], isAbelian := [ 4, 33, 53 ], lgLength := rec( lgLength := [ 3, 4, 5 ], pos := [ [ 49, -53 ], [ 11, -35, 40 , -48 ], [ 1, -10, 36, -39 ] ] ), frattFacs := rec( frattFacs := [ 4, 7, 10, 13, 17, 20, 23, 26, 29, 32, 35, 38 , 41, 44, 47 ], pos := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 17, 22, 27, 32, 35 ] ) ); SMALL_GROUP_LIB[ 1770 ] := [ 330622750731, 17744272401, 585587385426187, 6156187223, 584903688010463, 30795897618497, 1036490420625770891, 3595 ]; PROPERTIES_SMALL_GROUPS[ 1770 ] := rec( isNilpotent := [ 8 ], isAbelian := [ 8 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -8 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 1780 ] := [ 164117010667459, 4757618431453975, 8478299334600167775, 13663519052127, 8465499420524636951, 291906310686857155, 26862603526377263189856607, 26862603531241454623134047, 46243580982544294351199, 15068598679741223801183, 14595251339919711, 2673202037087, 94032240107, 4763084714606943, 351 ]; PROPERTIES_SMALL_GROUPS[ 1780 ] := rec( isNilpotent := [ 4, 15 ], isAbelian := [ 4, 15 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 11, -15 ], [ 1, -10 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1782 ] := [ 33671718872992908164727772091111, 53439672961991182011119, 59969352346218177152245826554019111, 36689327161358011119, 30029678379526011119, 36644412458500011119, 65300343009838598011119, 29988593074700011119, 65300301924533772011119, 36689232807424011119, 65380212842434052011119, 65307002564267520011119, 116507539285222639110011119 , 5950315617583890019111, 5937000241697538019111, 31727315953826925448019111, 21153531835009995538019111, 10603515692039799704019111, 3335393378826019111, 18853098649470674930584019111, 5943661666896256019111, 10591595089634532224019111, 10591605090173454722019111, 18874222449732462058376019111, 10591605090172406146019111, 37716717583511097187208019111, 10734116254811947914011191, 116365138029620235138011119, 621813073524476968175556011191, 37695724383812082207626011191, 18885271266641036968916011911, 53439672961991430011119, 33596211599660168836548564011911, 10769691667338380736011191, 207616435006307923136448011119, 19191590551196964767170011191, 34199139401918004767756228011191, 19191590551196963718594011191, 67776465730311532567334852011191, 18874305607599624553420091111, 31727342621949969096091111, 18895465049785422054360091111, 18874222446398974084032091111, 67173526879260126407213768091111, 37695581862658135212736091111, 59935546359890529299045958604091111, 33634710897072498758648806011911, 56538540152481105577700011911, 33653553398136604993782772011911, 37727291634158241089248011911, 119703224899263079086603409124011911, 67173526879496675508917984011911, 119803920039274651265414498022011911, 20588789766011119, 61674095618011119, 109944356471814011119, 20588789770011119, 36648149582858011119, 20588792832011119, 36689234889732011119, 36689246424068011119, 65380237133745158011119, 16828596744011119, 20563640832011119, 36644389405192011119, 36644389390852011119, 3339122115344011911, 1871708676011911, 3331649995520011911, 5606737408011911, 11870668818776848011911, 9991206471172011911, 6023632394388360011191, 29988593074948011119, 65300301924549504011119, 109899510974208011119, 10579814392090608520011191, 195840928587450116011119, 5950330557694864019111, 3335393379074019111, 5937000241697664019111, 3335393509760019111, 21153531849950106512019111, 21153531849950104464019111, 5943671001317762019111, 10734113108051100616011191, 53439672961991554011119, 116365138029620235200011119, 6023630627553728011191, 18853229246886686231496011191, 18853229246886686230472011191, 10734109778271814082011191, 10603489102394295248091111, 5943671028580800091111, 19128189559098287588328011191, 10734109778582192608011191, 11534338011119, 11535360011119, 20565722114011119 , 20565722120011119, 9437696011119, 1049088011191, 16828596992011119, 1871708928011911, 29988593075072011119, 3335393379200019111, 53439672961991616011119, 5943671028450240091111, 95229497218578777056011119, 11119 ]; PROPERTIES_SMALL_GROUPS[ 1782 ] := rec( isNilpotent := [ 4, 54, -62, 97, -100, 110 ], isAbelian := [ 4, 54, 57, 97, 110 ], lgLength := rec( lgLength := [ 3, 4, 5, 6 ], pos := [ [ 101, 108, -110 ], [ 5 , -7, 22, 35, 40, -41, 47, -48, 54, -56, 63, -66, 69, 75, 81, 88, 93, -100, 102, -107 ], [ 8, -13, 15, -16, 21, 23, -26, 28, -29, 34, 36, -39, 42, -46, 49, -53, 57, -62, 67, -68, 70, -74, 76, -80, 82, -87, 89, -92 ], [ 1, -4, 14, 17, -20, 27, 30, -33 ] ] ), frattFacs := rec( frattFacs := [ 5, 9, 13, 17, 22, 26, 30, 34, 38, 42, 95, 99 , 103, 107, 111, 115, 119, 123 ], pos := [ 1, 2, 3, 4, 13, 26, 39, 46, 53, 62 , 66, 72, 78, 85, 92, 94, 96, 100 ] ) ); SMALL_GROUP_LIB[ 1785 ] := [ 102765557, 4959 ]; PROPERTIES_SMALL_GROUPS[ 1785 ] := rec( isNilpotent := [ 2 ], isAbelian := [ 2 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -2 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 1788 ] := [ 439975040922289, 64602289128171299, 115508974480957121063, 109806043460135, 115489136390935045923, 206494575728961934107175, 65480272563953959, 1317935450278128, 36125907624231, 261003179261, 64602296324927783, 295 ]; PROPERTIES_SMALL_GROUPS[ 1788 ] := rec( isNilpotent := [ 4, 12 ], isSupersolvable := [ 1, -7, 9, -12 ], isAbelian := [ 4, 12 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 7, -12 ], [ 1, -6 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1794 ] := [ 39593949120747, 1722722373053, 71031534747597291, 989498301, 2526217451, 1326826941, 4548940428779, 127441051, 4521354446839, 2368448109269, 8160814830538347, 747 ]; PROPERTIES_SMALL_GROUPS[ 1794 ] := rec( isNilpotent := [ 12 ], isAbelian := [ 12 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -12 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 1804 ] := [ 21295352382409, 92270840334439, 167232603548160399, 591137280399, 166432852625934439, 300245640962828800399, 872566210560399, 51200000399, 11878401569, 92700794880399, 399 ]; PROPERTIES_SMALL_GROUPS[ 1804 ] := rec( isNilpotent := [ 4, 11 ], isAbelian := [ 4, 11 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 7, -11 ], [ 1, -6 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1806 ] := [ 176692069550580191, 97885094051807, 97894354459103, 97897092758471, 176795654724050375, 32660363231, 100771254325727, 101048419311839, 181992329236103903, 371237082566111, 182245254409098719, 181997806767019487, 8640358307747, 670453974501359327, 182245531574084831, 181998083932005599, 329134928547293005535, 328688038105697912543, 8364240863, 1991488931, 14455595365343, 14592609563615, 65420298719, 8065519523, 118311909571295, 1692773167, 118037881181639, 14397792570803, 213671518659367775, 2015 ]; PROPERTIES_SMALL_GROUPS[ 1806 ] := rec( isNilpotent := [ 30 ], isAbelian := [ 30 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -30 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 1812 ] := [ 99642023591906272649, 54990641306272649, 470464709602501, 70020045506272649 , 126876409628006250299, 117418106250299, 54990203400000299, 70958899800000299, 8164800000299, 1409294706727500, 26524283615553375149, 38637000000299, 275400022351, 70020053100000299, 299 ]; PROPERTIES_SMALL_GROUPS[ 1812 ] := rec( isNilpotent := [ 6, 15 ], isSupersolvable := [ 1, -9, 12, -15 ], isAbelian := [ 6, 15 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 7, -15 ], [ 1, -6 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11, 13 ], pos := [ 1, 2, 3, 4, 5 , 6 ] ) ); SMALL_GROUP_LIB[ 1815 ] := [ 50971015081399, 5161399, 123193200033121399, 21761399, 37398401399, 37623681399, 37285761399, 530048481399, 1399 ]; PROPERTIES_SMALL_GROUPS[ 1815 ] := rec( isNilpotent := [ 2, 9 ], isSupersolvable := [ 1, -2, 4, -7, 9 ], isAbelian := [ 2, 9 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 3, 5, -9 ], [ 1, -2, 4 ] ] ), frattFacs := rec( frattFacs := [ 3, 5 ], pos := [ 1, 2 ] ) ); SMALL_GROUP_LIB[ 1818 ] := [ 169687813200990101, 9220253000010199, 357933564626600019901, 5171400010199, 5072000010199, 54400019901, 9220254400010199, 93240000990101, 16762429292000010199, 10199 ]; PROPERTIES_SMALL_GROUPS[ 1818 ] := rec( isNilpotent := [ 4, 10 ], isAbelian := [ 4, 10 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 5, 8, -10 ], [ 1, -4, 6, -7 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1820 ] := [ 81671838360347, 37128027891317, 149028892787400839, 22280091071475, 148835869608701423, 67676973549033065, 271233937060945874423, 1854973136375, 148598223104762651, 270449148488713035911, 40520050199360499, 493003151185730552524271, 493003151282189142650351, 958676944753820233199, 516198197142205830761, 907732864916105677721718263, 907732864916780887852600823, 12211921797529879670050295, 270448955465534336495, 492217451599790883622391, 482337955381751, 289420775129855, 879798845608428023, 37185342604889, 877855902105305591, 3686729198533411319, 1601233898866797773303, 44877349367, 20416168505, 81883850932727, 12262441815, 81777852482303, 37185119651417, 149029634784264695, 503 ]; PROPERTIES_SMALL_GROUPS[ 1820 ] := rec( isNilpotent := [ 8, 35 ], isAbelian := [ 8, 35 ], lgLength := rec( lgLength := [ 4, 5 ], pos := [ [ 21, -35 ], [ 1, -20 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11, 13, 15, 17 ], pos := [ 1, 2, 3, 4, 5, 6, 7, 8 ] ) );