Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W col21.z GAP library of groups Hans Ulrich Besche ## Bettina Eick, Eamonn O'Brien ## SMALL_GROUP_LIB[ 1908 ] := [ 43381891894925170671605, 1157178685140275593639, 89180014980185589055543533 , 632899337769144055, 2207351414516173304791463, 24100247116682034483588608350445, 46898696552013508306157, 68044131992229215056, 606487311527434999, 22736840662406445797, 46740037899296533341421, 330152452414199, 606487310386963459, 11904170372609009, 1157178685163848243623, 22713119626780073973, 2207896934124058257063671, 2971358764564215, 1156892777547385119747, 2207351414516196877441447, 4211626498896764108911083255, 82686180686733163820343285, 15336063813397758272114411855085303, 8361550376744610073996442664695, 630245913220221687, 1203792683004541143799, 11904534988135141, 1202509728857721965303, 2296836439513485474564855, 35662602881913072, 317741071993591, 6277928981741, 606487334339676919, 11904194325322469, 1157178685175634430711, 2807 ]; PROPERTIES_SMALL_GROUPS[ 1908 ] := rec( isNilpotent := [ 4, 12, 18, 36 ], isSupersolvable := [ 1, -7, 9, -21, 25, -29, 31, -36 ], isAbelian := [ 4, 12, 18, 36 ], lgLength := rec( lgLength := [ 3, 4, 5 ], pos := [ [ 26, -31, 34, -36 ], [ 7, -13, 16, -19, 21, -25, 32, -33 ], [ 1, -6, 14, -15, 20 ] ] ), frattFacs := rec( frattFacs := [ 5, 9, 13, 17, 22, 26, 30, 34, 38, 42, 46, 50 , 23, 27, 31, 35, 39, 43 ], pos := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 ] ) ); SMALL_GROUP_LIB[ 1911 ] := [ 116782148518193, 40716258263, 74637642677380121, 222827276142404633, 138062807, 21899735, 32516633, 40992586199, 40716548567, 61090250033, 78337824899543, 77808384721367, 60941614385, 78335892636119, 2519 ]; PROPERTIES_SMALL_GROUPS[ 1911 ] := rec( isNilpotent := [ 5, 15 ], isAbelian := [ 5, 15 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 6, 10, -15 ], [ 1, -5, 7, -9 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11 ], pos := [ 1, 2, 3, 4, 5 ] ) ); SMALL_GROUP_LIB[ 1914 ] := [ 8516674599, 2852005389, 16345433912359, 334380677, 16272422620103, 5424580166357, 31285204461501479, 1063 ]; PROPERTIES_SMALL_GROUPS[ 1914 ] := rec( isNilpotent := [ 8 ], isAbelian := [ 8 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -8 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 1924 ] := [ 18211500225083, 57941808904403, 112092538126586543, 413644071599, 111468383979501779, 35028903951168059, 414940031830646180188847, 414940031646988958339759, 2492924133243246744239, 214465782447286145711, 673440073408943, 30152466863, 9513346295, 58260020539823, 431 ]; PROPERTIES_SMALL_GROUPS[ 1924 ] := rec( isNilpotent := [ 4, 15 ], isAbelian := [ 4, 15 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 11, -15 ], [ 1, -10 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1925 ] := [ 19768653539, 394253359, 20803359, 3359 ]; PROPERTIES_SMALL_GROUPS[ 1925 ] := rec( isNilpotent := [ 2, 4 ], isAbelian := [ 2, 4 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 3, -4 ], [ 1, -2 ] ] ), frattFacs := rec( frattFacs := [ 3, 5 ], pos := [ 1, 2 ] ) ); SMALL_GROUP_LIB[ 1926 ] := [ 240398695808925743, 13078829285995735, 537378445667343862015, 6916606284503 , 6791116074679, 68678768991, 13078831053463479, 124694345528303, 25189837693732829239, 11447 ]; PROPERTIES_SMALL_GROUPS[ 1926 ] := rec( isNilpotent := [ 4, 10 ], isAbelian := [ 4, 10 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 5, 8, -10 ], [ 1, -4, 6, -7 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1932 ] := [ 21750305373049273723, 946332172195079345, 42021582483852318217595, 163728832361649, 3427725010830977, 816254175192241, 6637385220930753915, 163386466323213, 6622369263625829251, 1577003556175910131, 12823428285700812151239, 40783127684551, 21765628016475206247, 3753831666332263, 163576444597175, 7252390835130305127, 18762012841505383, 3753823750355359, 36271042763838181991, 816259117514703, 36248216035261734503 , 50746122812053121639, 70075654620529273121383, 105546384311, 489482897265340, 318598345421353101, 1773838905959, 422845199287, 3435493549312615, 85096774467, 3427725335499167, 816254499860431, 6637385221090506343, 615 ]; PROPERTIES_SMALL_GROUPS[ 1932 ] := rec( isNilpotent := [ 12, 34 ], isSupersolvable := [ 1, -24, 27, -34 ], isAbelian := [ 12, 34 ], lgLength := rec( lgLength := [ 4, 5 ], pos := [ [ 13, -34 ], [ 1, -12 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 ] , pos := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ] ) ); SMALL_GROUP_LIB[ 1935 ] := [ 107967291003767, 342538683395, 55861242611, 76019 ]; PROPERTIES_SMALL_GROUPS[ 1935 ] := rec( isNilpotent := [ 2, 4 ], isAbelian := [ 2, 4 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 3, -4 ], [ 1, -2 ] ] ), frattFacs := rec( frattFacs := [ 3, 5 ], pos := [ 1, 2 ] ) ); SMALL_GROUP_LIB[ 1936 ] := [ 258272146259930876216087000099, 8084838120685591000099, 968032222308826181529729237879000099, 133405034225170645782000099, 258273058843652310172470000099, 500016643754558977935934326000099, 500016643754558978062812022000099, 133405034225170645781000099, 258273058843652310172469000099, 133405034470678987539000099, 258273058843897818514227000099, 258273979508281320670003000099, 133405505601186825010000099, 12934199159853663076647682705269000099, 6680887995792181341243574132000099, 25040609573476691716389913840584567000099 , 12934199159853663076647682705270000099, 133405981150844814129000099, 4176052486163000099, 951101726654513000099, 1841333188565139507000099, 4176052486165000099, 920668559554641973000099, 1783327861945402393716000099, 3452522740726299158905973000099, 6684084026046115171766633591000099, 258273058843652183294805000099, 68907559000474388000099, 133405505601059947348000099, 133405505601059947346000099, 920699976249509648000099, 3450871898652497115350866000099, 3450871898181121099171606000099, 6680887995791234415442528086000099, 68907559000474385000099, 68907802479821648000099, 2156920849000099, 245636268080000099, 920668559427764275000099, 475551941787700000099, 35574486401808000099, 1048592000099, 68522445526532621090009, 133329418125102285575000099, 476041562816519000099, 499729910586152789498409735000099, 753306476589617670000099, 1458401338677744636423000099, 1458401338432109416998000099, 2823464991204564076073511000099, 2825113969594585331013220000099, 2823464991679868352598630000099, 5469420645135117200957380198000099, 2823464991679868225720934000099, 5466228223892224885113492071000099, 10588798368981586901053603845735000099, 5466228223892225130748711527000099, 753306722097959427000099, 753306476589617698000099, 1458401814473037845027000099, 1458401338677617758755000099, 1458401813981767406115000099, 35393825145354009009, 68522423172989482009009, 132659454472397783722009009, 132659454472409318058009009, 256828703858584449974955009009, 35393825145353009009, 68522423172989481009009 , 35416144085507009009, 68522445491929635009009, 68565677290553891009009, 35393825145378009009, 162105453941871348392009009, 313836158831462936742569009009, 313836158831462936742570009009, 607586803497712245539867307009009, 35416144085537009009, 68868501097415430000099, 133329417879213310758000099, 258125753489461371470694000099, 258125753489461498348390000099, 499731458755597460927677287000099, 68868501097415429000099, 133329417879213310757000099, 68868746605757187000099, 133329418124721652515000099, 133329893674506519331000099, 68868501097415458000099, 3450871822565020777056100000099, 6680887848485880224503826277000099, 6680887848485880224503826278000099, 12934198874668664114639530887015000099, 68868746605757217000099, 245888974851000099, 491397316641000099, 951590967050275000099, 245888974853000099, 475795673841701000099, 921140424684340324000099, 1783327862189007570021000099, 3452522741197918780261479000099, 1873039820317834257022038971626247000099, 499731443096607435600802082000099, 967480073835031995323065151779000099, 1873041422944944928751030300161380000099, 3626208194821413382061994661022643558000099, 7020339065174256307672021663739748136295000099, 1873039103248612455187058966770467000099, 499729910586152543609520903000099, 967477106894791324182459286311000099, 258124953815161564660483000099, 499729910586152543609520931000099, 258124953815161564660485000099, 499729910586152543609520933000099, 258124953815161564660513000099, 133496724939762312454000099, 133329417879086440774000099, 258449659483379945448774000099, 500358540759823574497240391000099, 68868500970545444000099, 258449659483379945448742000099, 35572572758276000099 , 68954919906845956000099, 133496724939762312516000099, 35572572758274000099, 68868500970545474000099, 133496724939762312514000099, 68868500970545411000099 , 35572572758304000099, 68868500970545442000099, 133329417879086440739000099, 35617210639616000099, 68954919906846016000099, 68522423161455173000909, 18281923076000909, 35393813611076000909, 35393813611074000909, 22339913216000909, 83732155950171714000909, 83732155950171654000909, 162105453919540872774000909, 18281923073000909, 18281923136000909, 133329417879086433093000099, 35572572750596000099, 68868500970537796000099, 68868500970537794000099, 475568159065856000099, 1782475114961144121154000099, 1782475114961144121094000099, 3450871822564775141836614000099, 35572572750593000099, 35572572750656000099, 126877697000099, 126877728000099, 475795546964003000099, 245762097188000099, 13591364801015042253686705007856558054815525000099, 967479246031939182346094740229000099, 258125600794703843169056000099, 1873036893578199842601001530307363000099, 133329005069815120641000099, 18374205696000099, 9437696000099, 18374198016000099, 99 ]; PROPERTIES_SMALL_GROUPS[ 1936 ] := rec( isNilpotent := [ 2, 19, -26, 37, -40, 42, 45, 95, -102, 155, -158, 167 ], isSupersolvable := [ 1, -45, 47, -102, 117, -158, 164, -167 ], isAbelian := [ 2, 19, 22, 37, 42, 45, 95, 98, 155, 167 ], lgLength := rec( lgLength := [ 2, 3, 4, 5, 6 ], pos := [ [ 164, 166, -167 ], [ 41, -42, 58, -62, 86, -89, 94, -97, 104, -105, 109, 112, -113, 116, -134, 145, -158, 161, -163, 165 ], [ 10, -13, 18, -21, 27, -40, 47, -57, 70, -73, 78, -85, 90, -93, 98, -102, 106, -108, 110, -111, 114, -115, 135, -144, 159, -160 ], [ 3, -9, 14, -17, 22, -26, 44, -46, 63, -69, 74, -77, 103 ], [ 1, -2, 43 ] ] ), frattFacs := rec( frattFacs := [ 9, 17, 26, 34, 91, 99, 332, 340, 29, 37, 45, 70, 78, 86, 94, 102, 287, 295, 303, 311, 319, 327, 335, 343 ], pos := [ 1, 2, 18, 26, 36, 40, 41, 42, 43, 44, 45, 46, 62, 78, 94, 102, 103, 108, 109, 116, 134, 144, 154, 158 ] ) ); SMALL_GROUP_LIB[ 1938 ] := [ 1042561166435, 1056963873635, 2020466324983139, 550914659, 917070947, 809575557, 1786095256931, 57112111, 1771798369823, 1563364743333, 3461460207850979, 611 ]; PROPERTIES_SMALL_GROUPS[ 1938 ] := rec( isNilpotent := [ 12 ], isAbelian := [ 12 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -12 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) );