Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W col6.z GAP library of groups Hans Ulrich Besche ## Bettina Eick, Eamonn O'Brien ## SMALL_GROUP_LIB[ 1272 ] := [ 10102655932966547393, 514441841964170832243, 654370444847068440910951, 1261836861697711207, 654127711280674714118515, 832050449168906363240406119, 534584020343390005351, 534584020343009801319, 679990874557005615225959, 534584020348712861799, 679990874557011318286439, 679990874557010938082407, 864948392437190878559575143, 16384356150349887323106496, 654369603292325554792131, 404434940630725315, 514441511818181751491, 404434940250521283, 404434945953581763, 12850554530279533295281, 7942359573529265, 10102637250113585841, 7942359193325233, 7942364896385713, 832359204586511329080810599, 514442172138294732903, 654370443856621349185639, 514442172137914528871, 514442172143617589351, 990453174989927, 990458878050407, 1603797621133681073255, 654369413787435955614823, 25670832889330228852304, 32653301018255958076227568, 1069618023800499610995, 514251347989750841027, 654127711610848457815143, 420269920725631079, 23777680331390960, 317741071990887, 6277928979037, 404434964203372647, 103 ]; PROPERTIES_SMALL_GROUPS[ 1272 ] := rec( isNilpotent := [ 4, 30, -32, 44 ], isSupersolvable := [ 1, -13, 15, -33, 37, -39, 41, -44 ], isAbelian := [ 4, 30, 44 ], lgLength := rec( lgLength := [ 3, 4, 5 ], pos := [ [ 39, 41, -44 ], [ 7, -38, 40 ], [ 1, -6 ] ] ), frattFacs := rec( frattFacs := [ 4, 7, 10, 13, 17, 20, 23, 26, 29, 32, 35, 38 ], pos := [ 1, 2, 3, 4, 5, 6, 13, 14, 19, 24, 29, 32 ] ) ); SMALL_GROUP_LIB[ 1274 ] := [ 86714197375601, 148923008279, 111100389712354649, 138061079, 117449495, 53748569, 149475373847, 68001805937, 190435189046039, 791 ]; PROPERTIES_SMALL_GROUPS[ 1274 ] := rec( isNilpotent := [ 4, 10 ], isAbelian := [ 4, 10 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 5, 8, -10 ], [ 1, -4, 6, -7 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1275 ] := [ 570561343, 214315310899, 4927 ]; PROPERTIES_SMALL_GROUPS[ 1275 ] := rec( isNilpotent := [ 1, 3 ], isSupersolvable := [ 1, 3 ], isAbelian := [ 1, 3 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 2, -3 ], [ 1 ] ] ), frattFacs := rec( frattFacs := [ 3 ], pos := [ 1 ] ) ); SMALL_GROUP_LIB[ 1276 ] := [ 3617541313465, 10851324501163, 13939527009800727, 100391150103, 13839045358034091, 17658714913095422487, 104816274727191, 8516673815, 2852004605, 10924345012503, 279 ]; PROPERTIES_SMALL_GROUPS[ 1276 ] := rec( isNilpotent := [ 4, 11 ], isAbelian := [ 4, 11 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 7, -11 ], [ 1, -6 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1278 ] := [ 20156722784858171, 1084905535705039, 29819424061982669731, 872859545039, 848993605039, 13061449731, 1084905871845039, 15748639538171, 1386510851121205039, 5039 ]; PROPERTIES_SMALL_GROUPS[ 1278 ] := rec( isNilpotent := [ 4, 10 ], isAbelian := [ 4, 10 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 5, 8, -10 ], [ 1, -4, 6, -7 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1284 ] := [ 83194329146773, 8721526279819613, 11198455149153916643, 20749187580899, 8887397446436563, 249059437076460, 6791116063443, 68678757755, 8721528173523923, 211 ]; PROPERTIES_SMALL_GROUPS[ 1284 ] := rec( isNilpotent := [ 4, 10 ], isSupersolvable := [ 1, -5, 7, -10 ], isAbelian := [ 4, 10 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 5, -10 ], [ 1, -4 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1287 ] := [ 27466431719, 1518229703, 85600199, 1991 ]; PROPERTIES_SMALL_GROUPS[ 1287 ] := rec( isNilpotent := [ 2, 4 ], isAbelian := [ 2, 4 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 3, -4 ], [ 1, -2 ] ] ), frattFacs := rec( frattFacs := [ 3, 5 ], pos := [ 1, 2 ] ) ); SMALL_GROUP_LIB[ 1288 ] := [ 701144625346136669, 2944110311506686189, 3804913646051303781027, 17536742703491747, 16111087077047514947, 16111087077042361315, 20751080164573369359011, 16111087077119665795, 20751080164573446663491, 20751080164573441509859, 26727391251979829349093539, 3792011580915667949993, 2285797585125449, 2944108369520178761, 2285797579971817, 2285797657276297, 903073515869561681881, 544366696799865, 701144034353173625, 544366691646233, 544366768950713, 4900728758616826405496995, 2954125481482374979, 3804913632457006908739, 2954125481477221347, 2954125481554525827, 13594379330531, 13594456635011, 22569828622715986083, 981079303367441608, 12508600720191619, 1773838905475, 422845198803, 2293566118463619, 131 ]; PROPERTIES_SMALL_GROUPS[ 1288 ] := rec( isNilpotent := [ 4, 27, -29, 35 ], isSupersolvable := [ 1, -29, 31, -35 ], isAbelian := [ 4, 27, 35 ], lgLength := rec( lgLength := [ 3, 4, 5 ], pos := [ [ 30, -35 ], [ 5, -29 ], [ 1, -4 ] ] ), frattFacs := rec( frattFacs := [ 4, 7, 10, 13, 17, 20, 23, 26, 29 ], pos := [ 1, 2, 3, 4, 11, 16, 21, 26, 29 ] ) ); SMALL_GROUP_LIB[ 1290 ] := [ 10341883466123, 10482034253963, 13340593483711115, 56159891339, 65420298635 , 4879142817, 84469402598027, 1692769639, 84332388403199, 6173754297777, 108965679382500107, 1931 ]; PROPERTIES_SMALL_GROUPS[ 1290 ] := rec( isNilpotent := [ 12 ], isAbelian := [ 12 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -12 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 1292 ] := [ 1042547839395, 1181539421981, 1545033400475183, 17360616239, 1346621059441059, 33037915708190188079, 19791906301727, 917070623, 809575233, 1195837883423, 287 ]; PROPERTIES_SMALL_GROUPS[ 1292 ] := rec( isNilpotent := [ 4, 11 ], isAbelian := [ 4, 11 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 7, -11 ], [ 1, -6 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1300 ] := [ 27001520737901835879, 75858056263596143, 35425788320387489431095, 70223974825439, 98573858374599932015, 832576227907776126780276279, 45632569916066861527299687, 62047020905311191788010176055, 77830456937294151794125417578039, 77830441811829778951116296912439, 28221319023555392055, 58352179950047, 20770400538945111, 27250590511798530615 , 53000221151, 58352179208699, 15920184026739, 75995854264918127, 20749298691806823, 98795300796920909279, 1324980882911, 75826046769422843, 20675020261549683, 128432594081547732967535, 128432594150446725914735, 349393752299092631663, 98573996172601253999, 35066149376979845846631, 217053273002517778829230624223, 217053273002607692015026720223, 592617906197543161519820255, 35066149403479458518631, 217053273002518123324195360223, 592617906197887656484556255, 134373732547016070759, 168778825535208690765942239, 168778825535553185730678239, 2270665107186783055138271, 128146195713309431713247, 206741983592927, 269739602456740319, 15961191286359 , 268765166797554143, 350661483699141575135, 44877349343, 12262441527, 58458193330655, 15960968332887, 75996384264880607, 479 ]; PROPERTIES_SMALL_GROUPS[ 1300 ] := rec( isNilpotent := [ 4, 15, 21, 50 ], isAbelian := [ 4, 15, 21, 50 ], lgLength := rec( lgLength := [ 3, 4, 5 ], pos := [ [ 41, -45, 48, -50 ], [ 11 , -16, 19, -22, 28, -40, 46, -47 ], [ 1, -10, 17, -18, 23, -27 ] ] ), frattFacs := rec( frattFacs := [ 5, 9, 13, 17, 22, 26, 30, 34, 38, 42, 46, 50 , 54, 58, 62, 23, 27, 31, 35, 39, 43 ], pos := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 ] ) ); SMALL_GROUP_LIB[ 1302 ] := [ 2172018241079, 2224260001079, 2827863433441079, 16751033281079, 2828891148481079, 2862369005761079, 542168641775, 21809808459361079, 2828943390241079, 2862421247521079, 3683216103562081079, 3726804273740641079, 1762561079, 518401775, 2172873601079, 2198586241079, 12052801079, 2099521775, 15723318241079, 440645371, 15671892964559, 2702769146135, 20471799766321079, 1079 ]; PROPERTIES_SMALL_GROUPS[ 1302 ] := rec( isNilpotent := [ 24 ], isAbelian := [ 24 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -24 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 1305 ] := [ 45632698943, 22847 ]; PROPERTIES_SMALL_GROUPS[ 1305 ] := rec( lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 2 ], [ 1 ] ] ), frattFacs := rec( frattFacs := [ 3 ], pos := [ 1 ] ) ); SMALL_GROUP_LIB[ 1308 ] := [ 5253399911050034939, 4016511831154427, 91324863421489, 9756517062164219, 12761541229397615063, 22777986413015, 16684322757766597689083, 4016394148847831, 12754510498903703291, 16682899703939844252119, 9938609122074839, 3099738046679, 273410394256368, 5263528447561298219, 7457656283351, 74010610981, 9756519102886103, 215 ]; PROPERTIES_SMALL_GROUPS[ 1308 ] := rec( isNilpotent := [ 6, 18 ], isSupersolvable := [ 1, -12, 15, -18 ], isAbelian := [ 6, 18 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 8, 11, -18 ], [ 1, -7, 9, -10 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11, 13 ], pos := [ 1, 2, 3, 4, 5 , 6 ] ) ); SMALL_GROUP_LIB[ 1314 ] := [ 1497972507181724879, 1140039763113167, 23847364153368073, 1284676146050255, 36280839707520649273, 1004490994895, 1966720360996307612879, 1496743082017436879, 1140013050500303, 1140040139347151, 1497972507557958863, 870282958031, 977778382031, 14619387961, 1284676522284239, 18122438909449, 1688066270103311567, 5327 ]; PROPERTIES_SMALL_GROUPS[ 1314 ] := rec( isNilpotent := [ 6, 18 ], isAbelian := [ 6, 18 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 9, 12, -13, 16, -18 ], [ 1, -8, 10, -11, 14, -15 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11, 13 ], pos := [ 1, 2, 3, 4, 5 , 6 ] ) ); SMALL_GROUP_LIB[ 1316 ] := [ 15100565219337, 135867224759697, 179369000078956067, 754222986019, 709068988213011, 103303865107, 11605568027, 136298273915923, 275 ]; PROPERTIES_SMALL_GROUPS[ 1316 ] := rec( isNilpotent := [ 4, 9 ], isAbelian := [ 4, 9 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 5, -9 ], [ 1, -4 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1320 ] := [ 19309988562403849013009, 19313673136775429030019, 25489184917580423941030019, 7323403747337013009, 16458597794313013009, 5488047555081019003, 21765589733212933010039, 1831197475337039001, 21725364382335749030019, 7244229724078853090013, 28730578524312699779000139, 228725882883000139, [ ( 1, 2, 4, 5)( 3, 6, 7, 9)( 8,10,12,14)(11,15,16,20)(13,17,19,22) (18,21,23,24), ( 1, 3, 2)( 4, 7, 5)( 6, 8,11)( 9,12,16)(10,13,18) (14,19,23)(15,17,21)(20,22,24), ( 1, 4)( 2, 5)( 3, 7)( 6, 9)( 8,12) (10,14)(11,16)(13,19)(15,20)(17,22)(18,23)(21,24) ], [ ( 1, 2, 4, 5)( 3, 6, 7, 9)( 8,10,12,14)(11,15,16,13)(17,19,18,20) (21,23,22,24), ( 1, 3, 2)( 4, 7, 5)( 6, 8,11)( 9,12,16)(10,13,17) (14,15,18)(19,21,24)(20,22,23), ( 1, 4)( 2, 5)( 3, 7)( 6, 9)( 8,12) (10,14)(11,16)(13,15)(17,18)(19,20)(21,22)(23,24)(25,26,27,28,29,30,31, 32,33,34,35) ], 19313639883346434003019, 19313639883346433003019, 25494004645959373315003019, 19313639883346464003019, 25494004645959373346003019, 25494004645959373345003019, 33652086132666314854947003019, 4221390632761028530380130090, 12755455110473318947001309, 7320624169474001309 , 9663223568794146001309, 7320624169473001309, 7320624169504001309, 12760318718292066595003019, 7323415281922003019, 9666908119957794003019, 7323415281921003019, 7323415281952003019, 16837200786049773667107003019, 9663223591666434003019, 12755455140946838306003019, 9663223591666433003019, 9663223591666464003019, 11084759042001309, 11084759072001309, 19313642628710435001309, 7236907706876425019003, 105074996051821232901010039, 9552718179682288389090013, 138698994788480455807875000139, 60304795898370001039, 60304795898369001039, 79602330637439491001039, 60304795898400001039, 79602330637439522001039, 79602330637439521001039, 105075076441471717923001039, 20109918736898003019, 20109918736897003019, 26545092761227779003019, 20109918736928003019, 26545092761227810003019, 26545092761227809003019, 35039522444849189411003019, 79686310869080578000139, 79686310869080577000139, 105185930347350596099000139, 79686310869080608000139 , 105185930347350596130000139, 105185930347350596129000139, 138845428058502951082531000139, 5488052805890009013, 5488052805889009013, 7244229708357891009013, 5488052805920009013, 7244229708357922009013, 7244229708357921009013, 9562383215036997923009013, 79602330752782978000139, 79602330752782977000139, 105075076593840296579000139, 79602330752783008000139 , 105075076593840296610000139, 105075076593840296609000139, 138699101103869358248611000139, 132659507704630018000139, 132659507704630017000139, 175110550170280921859000139, 132659507704630048000139, 175110550170280921890000139, 175110550170280921889000139, 231145926224770986150691000139, 105185930164646714114000139, 105185930164646714113000139, 138845427817333826525955000139, 105185930164646714144000139, 138845427817333826525986000139, 138845427817333826525985000139, 183275964718880651178154787000139, 3197906247086113176139000, 21725333874016803001309, 12468617730001309, 16458586260002001309, 12468617729001309, 12468617760001309, 7244215856661027001903, 4157604354001903, 5488042312226001903, 4157604353001903, 4157604384001903, 28730578371771106083001039, 16489083044610001039, 21765589675541282001039, 16489083044609001039, 16489083044640001039, 2417176517542435003901, 1387266562003901, 1831194329634003901, 1387266561003901, 1387266592003901, 28677480939040801571003019, 16458609328898003019, 21725364347732770003019, 16458609328897003019, 16458609328928003019, 9562383215036990243009013, 5488052798210009013, 7244229708350242009013, 5488052798209009013, 5488052798240009013, 37924363651864555684771000139, 21765589790884738000139, 28730578524139684770000139, 21765589790884737000139, 21765589790884768000139, 173015041000139, 173015072000139, 301689958563875000139, [ ( 1, 4, 3, 9, 5, 7,10,11, 6, 8,12), ( 1,10, 3,12)( 2, 5, 8, 9)( 4,11, 6, 7) ], [ ( 1, 2)( 4, 5)( 6, 7)( 8,10), ( 2, 3, 4)( 5, 6, 8)( 7, 9,11)(12,13) ], [ (1,2,3,4,5), ( 1, 2)( 6, 7, 8, 9,10,11,12,13,14,15,16) ], [ ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10,11,12,13,14,15,16), ( 1, 2)( 7,16)( 8,15)( 9,14)(10,13)(11,12) ], [ ( 1, 2, 3, 4, 5)( 7,16)( 8,15)( 9,14)(10,13)(11,12), ( 3, 4, 5)( 6, 7, 8, 9,10,11,12,13,14,15,16) ], [ ( 1, 2, 3, 4, 5)( 6, 7)( 8, 9,10,11,12,13,14,15,16,17,18), (3,4,5) ], 6374121887932451136031900, 8413840892059675888064031900, 7295381252676096013009, 7323390317056000319, 14661998155776013009, 11082924544000139, 11084759296000319, 14628779459328000319, 79605921045680642001039, 105079899760408697346000139, 7244210330931713009013, 105185930134196095745000139, 105079815780292399746000139, 138705467683587348273794000139, 60368417229312000139, 4828864996311424039100, 6374101838949614016031900, 6374101805705560512091300, 8413814427535393436128013900, 60307515906560013009, 27412506089984019003, 265587510909865728010039, 3670016000139, 5482506355201001903, 79602269736272641001039, 7236907712119553009013, 105074996051878904705000139, 45685412352000139, 15234765312000319, 60368417200640000139, 4157612288000913, 60304795898496000139, 100499626920704000139, 79686310730668800000139, 4153421824013900, 9437696000139, 3146240000193, 12491686656000139, 1049088000391, 12468617984000319, 4157604608000913, 16489083044736000139, 139 ]; PROPERTIES_SMALL_GROUPS[ 1320 ] := rec( isNilpotent := [ 12, 130, -132, 181 ], isSupersolvable := [ 1, -12, 15, -21, 23, -93, 95, -132, 142, 144, -153, 161, -172, 174, -181 ], isSolvable := [ 1, -12, 15, -132, 139, -181 ], isAbelian := [ 12, 130, 181 ], lgLength := rec( lgLength := [ 4, 5, 6, false ], pos := [ [ 142, 144, -146, 153, 161, 166, -172, 174, -181 ], [ 15, -40, 45, -132, 139, -141, 143, 147, -152, 154, -160, 162, -165, 173 ], [ 1, -12, 41, -44 ], [ 13, -14, 133, -138 ] ] ), frattFacs := rec( frattFacs := [ 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37 , 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122 ], pos := [ 1, 2, 3, 4, 5, 6, 7, 8 , 9, 10, 11, 12, 13, 14, 21, 22, 27, 32, 37, 40, 41, 42, 43, 44, 51, 58, 65, 72, 79, 86, 93, 94, 99, 104, 109, 114, 119, 124, 129, 132 ] ) );