Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W col7.z GAP library of groups Hans Ulrich Besche ## Bettina Eick, Eamonn O'Brien ## SMALL_GROUP_LIB[ 1323 ] := [ 1177731637436001295439, 231273203848271, 890197760710016495, 1177742333111568557039, 1177742333117811254255, 890197760710008719, 1177742333111568549263, 890205845130422063, 174795593615, 8259216006959, 10926948771102095, 224177933504855, 296592142864165199, 299714078285703503, 8277816533327, 672694835069231, 127465775, 1561142511284975, 2065391542070956367, 2065399801159373135, 1561142511393839, 2065391542071073007, 2065391548313770223, 2732513010159506044751, 2732513018418594461519, 2732523945192569845583, 169445651303, 224176149977447 , 224177041791335, 169445643527, 224176149969671, 169445760167, 224181501233903, 296592130378887407, 296592136621584623, 224181501226127, 296592130378879631, 224181501342767, 226541240781551, 299714065800425711, 226541240773775, 299714065800417935, 226541240890415, 6242706575, 6242823215, 8265331247759, 169453100591, 128398895, 169446133295, 171229761071, 1583 ]; PROPERTIES_SMALL_GROUPS[ 1323 ] := rec( isNilpotent := [ 2, 9, -11, 15, 17, 44, -46, 51 ], isAbelian := [ 2, 9, 15, 17, 44, 51 ], lgLength := rec( lgLength := [ 2, 3, 4, 5 ], pos := [ [ 47, 49, -51 ], [ 16, -26, 33, -46, 48 ], [ 3, -11, 13, -15, 27, -32 ], [ 1, -2, 12 ] ] ), frattFacs := rec( frattFacs := [ 7, 13, 20, 26, 21, 27, 33, 39, 76, 82, 59, 65, 71, 77, 83 ], pos := [ 1, 2, 8, 11, 12, 13, 14, 15, 16, 17, 26, 32, 38, 43, 46 ] ) ); SMALL_GROUP_LIB[ 1326 ] := [ 6051581657535, 356324999675, 8024395216847295, 75497979, 505414079, 371196411, 673675477439, 35654641, 667971226399, 489864302363, 893296930455999, 447 ]; PROPERTIES_SMALL_GROUPS[ 1326 ] := rec( isNilpotent := [ 12 ], isAbelian := [ 12 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -12 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 1330 ] := [ 917071415, 272099075, 1220346840887, 164604297, 1218304428443, 358556031167 , 1623076046493623, 1079 ]; PROPERTIES_SMALL_GROUPS[ 1330 ] := rec( isNilpotent := [ 8 ], isAbelian := [ 8 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -8 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 1332 ] := [ 21132688210903119864455, 15868093995098874503, 2350025341853528993509, 61567887768073446023, 3364554164901545684286973, 49154462073567575, 109169527173308069453144711, 15865381712759133527, 81996025166965852250759, 436160348914855823762180062717, 2538234800048748075517, 11913148788020567, 5274376691153122512, 21266272260227489626979, 46222063383123287, 1764283295070212437, 2525940246415318587901, 36655321486679, 28144054612739668036461191, 21129172842634784318087, 15865381526825688947, 15868093998847777415, 21132688210906868767367, 11912962854575987, 46222063201771379, 1322562700053361, 61567887771822348935, 1761652054338473701, 82008426826432225356119, 329895777053015, 37494113100911602749542670983, 21129170130352444577111, 81959104484947779215219, 109169527173308073202047623, 15868018927852979543, 43961940590509856087, 77998393944506729642621795, 130215126638031034211, 11911174930171223, 11913152415991127, 15865381716387104087, 61558577873067794291, 81996025166969601153671, 109218705522388039794043223, 3125556546655574821867237, 193807756302525053657164900870487, 154039664675597120846995794263, 48859278476969303, 65180830410859218263, 1322620687069525, 65080617390987707735, 86820866145121140376919, 9163769906519, 3959750888130672, 15965669768496273251, 34681463637335, 998417500669, 46222067011093847, 1322566509375829, 61567887773696755031, 1367 ]; PROPERTIES_SMALL_GROUPS[ 1332 ] := rec( isNilpotent := [ 6, 18, 30, 61 ], isSupersolvable := [ 1, -12, 15, -36, 39, -44, 48, -53, 56, -61 ], isAbelian := [ 6, 18, 30, 61 ], lgLength := rec( lgLength := [ 3, 4, 5 ], pos := [ [ 38, -39, 49, -56, 59, -61 ], [ 8, 11, -18, 21, 24, -25, 28, -30, 32, -33, 35, -37, 40, -42, 44, -48 , 57, -58 ], [ 1, -7, 9, -10, 19, -20, 22, -23, 26, -27, 31, 34, 43 ] ] ), frattFacs := rec( frattFacs := [ 5, 9, 13, 17, 21, 25, 30, 34, 38, 42, 46, 50 , 54, 58, 62, 66, 70, 74, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75 ], pos := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] ) ); SMALL_GROUP_LIB[ 1340 ] := [ 39103762398231, 846833682390365, 1136503987840379927, 3254565693719, 52346183483198487, 4699601486411453657111, 2617288862639879, 632086405895, 29752390341, 848135785686023, 263 ]; PROPERTIES_SMALL_GROUPS[ 1340 ] := rec( isNilpotent := [ 4, 11 ], isAbelian := [ 4, 11 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 7, -11 ], [ 1, -6 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9 ], pos := [ 1, 2, 3, 4 ] ) ); SMALL_GROUP_LIB[ 1350 ] := [ 19330285422576831714403285, 42998067497540992983391, 35333444663759671450518415139293, 7972855165837663, 31850420368313499999, 264204346926304395615, 356675868350608317694303, 10606373887244583413, 7845036941140445, 10575075172085154293, 28542127808306461360629, 42998255220253580140895, 57848146427101796749853047, 481512422461473002989879647, 130054592681999581796754047351, 14318667322129326351317, 10590765194942096341, 78094997678317285575873184119, 96337168804276785791271287, 5905580106079, 144959445467487, 195695353008300383, 521538281467217681595494875531207007, 231119621198762158064689503, 52930227016562663775, 23511789146776023, 31819249428414357855, 14318729942649422840789, 19330391501900791825646453, 26076770618895391180749480437, 145277268812127, 23575522167554399, 5811092881789, 31827076701369205087, 7845011172377077, 42966553958533182587231, 10590765194407322581, 58004847845301211772158303, 4295033183, 385361025971473842164998495, 520237385061489974761527984479, 702320893540126699298281532178783, 520238055562630299876161487199, 386324556601997639668740864754015, 386324556601997248579756309225823, 286166523741845646109998186847, 171199719406490302300511, 231119853583836673584677215, 171199719406490302292319, 231120117764590588610486623, 171199891543582619730271, 214366839317980325888381, 289395243052048311466082685, 52930227016563171679, 71455806182703500099935, 1263646374205624035797089205895549, 936034351348245031009201701245, 231119621198762158065197407, 312011802338179364628469645663, 39207575379525983, 52930226801818485087, 39207575379517791, 52930226801818476895, 39207575383703903, 17416094499191, 29003920441719, 39155305583493495, 23569814155968863, 195706906473398623, 264204323836560163167, 7856573224387061, 5811092857333, 7833389007634933, 21142316895033164277, 10637776935766753757, 23511789147791831, 52859662593636696535, 28542159211354975142365, 14361218470335265653117, 31819249428414865759, 356675837179668419314015, 19273138186703295269847421, 10606420238532150229, 7845011707659221, 14360999118405474485085, 10637765528398857053, 19387644936245611799134589, 14361218465494839722365, 107374190943, 107378377055, 145062524625247, 285452611830722739044703, 211975065350890122209132895, 423736133825695728691708255, 126814606967744495967, 39207575380033887, 171199719406490302808415, 52930227016563425631, 231119621198762158065451359, 29042619187551, 12886999391, 17459045204319, 4297064829, 17416095531383, 23569814156476767, 5811093897717, 23511789148307927, 31819249428415119711, 7845011172885461, 31740915538538005335, 42955986729321474425183, 351 ]; PROPERTIES_SMALL_GROUPS[ 1350 ] := rec( isNilpotent := [ 4, 20, -22, 31, 39, 89, -91, 112 ], isSupersolvable := [ 1, -22, 26, -39, 65, -91, 101, -112 ], isAbelian := [ 4, 20, 31, 39, 89, 112 ], lgLength := rec( lgLength := [ 3, 4, 5, 6 ], pos := [ [ 94, -95, 100, 102, 109, 111, -112 ], [ 32, 37, -39, 43, -51, 55, 59, -64, 68, -70, 73, 81, 83, -84, 87, -93, 96, -99, 101, 103, 105, -106, 108, 110 ], [ 5, -7, 10, 14, 16, -25, 27, -28, 30, -31, 33, -36, 40, -42, 52, -54, 56, -58, 65, -67, 71, -72, 74, 77, 79, -80, 82, 85, -86, 104, 107 ], [ 1, -4, 8, -9, 11, -13, 15, 26, 29 , 75, -76, 78 ] ] ), frattFacs := rec( frattFacs := [ 7, 13, 19, 25, 32, 38, 44, 50, 56, 62, 33, 39, 45, 51, 57, 63, 69, 75, 81, 142, 148, 154, 160, 166, 172, 178, 184, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209 ], pos := [ 1, 2, 3, 4, 7, 11, 15, 17, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 46, 51, 55, 59, 64, 67, 70, 74, 78, 82, 84, 86, 88, 91 ] ) ); SMALL_GROUP_LIB[ 1352 ] := [ 151400934158774877471887, 8385007444411535, 276746454165213029028365780111, 204695754373387575636231311, 111982939465580476559, 151402185187416390482063, 111982939465580227727, 111983864783136104591, 6200911604879, 931518467481743, 1702727254070683665551, 204694122903264075284425871, 82767031219740815, 4078854287, 82045026833090123, 111894440776107844751, 932892365251727, 110880091995203257931, 204530661840529746431861903, 204530661549897258422264975, 1948021893927337853740175, 1065713776298662031, 1440845026028958606479, 1065713776302145679, 1440845026028962338959, 1948022475191624871060623, 110924804631651297851, 60684145368635, 82044973837082171, 60684145119803, 60684148852283, 151281282998406861628559, 82762159366379663, 111894440087121647759, 82762159366130831, 82762159369863311, 688990178447, 688993910927, 1260339651420890255, 373862414900738175218274404164751, 204532031449424931763571855, 1441440324352370645135, 373865381021936784681106824858767, 505465994939075852641213718484034703, 82011904354669115, 151280075325836168580239, 151280075110871310584975, 1440844596099640249487, 61214376001679, 44877349007, 61214153048207, 143 ]; PROPERTIES_SMALL_GROUPS[ 1352 ] := rec( isNilpotent := [ 2, 9, -11, 14, 17, 37, -39, 52 ], isSupersolvable := [ 1, -39, 41, -42, 45, -52 ], isAbelian := [ 2, 9, 14, 17, 37, 52 ], lgLength := rec( lgLength := [ 2, 3, 4, 5 ], pos := [ [ 49, 51, -52 ], [ 13, -14, 22, -26, 32, -39, 41, -44, 46, -48, 50 ], [ 4, -12, 16, -17, 19, -21, 27 , -31, 40, 45 ], [ 1, -3, 15, 18 ] ] ), frattFacs := rec( frattFacs := [ 7, 13, 20, 26, 32, 75, 81, 87, 22, 28, 34, 59, 65, 71, 77, 83, 89, 95, 101 ], pos := [ 1, 2, 3, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 26, 31, 36, 39 ] ) );