Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W trans14.grp GAP transitive groups library Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the transitive groups of degree 14 ## They were originally published by Greg Butler ## Names and actual generators are by John Conway, John McKay and AH. ## TRANSGRP[14]:= [[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),"C(14)=7[x]2"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(1,12)(2,11)(3,10)(4,9)(5,8)(6,7) (13,14),"D_14(14)=[7]2"], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(1,13)(2,12)(3,11)(4,10)(5,9)(6,8), "D(7)[x]2"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,6)(2,5)(3,4)(7,14)(8,13)(9,12)(10,11),"2[1/2]F_42(7)"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"F_21(7)[x]2"], [(3,10)(5,12)(6,13)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),"[2^3]7"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13) (7,14),"F_42(7)[x]2"], [(2,4,6,8,10,12,14),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), "[7^2]2=7wr2"], [(1,8)(2,9)(4,11),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),"[2^4]7"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,13)(3,10)(4,12)(5,11)(6,9),"L_7(14)"], [(3,10)(5,12)(6,13)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),"[2^3]F_21(7)"], [(2,4,6,8,10,12,14),(1,13)(2,12)(3,11)(4,10)(5,9)(6,8), (1,6,13,8)(2,9,12,5)(3,4,11,10)(7,14),"1/2[D(7)^2]2"], [(2,4,6,8,10,12,14),(1,13)(2,12)(3,11)(4,10)(5,9)(6,8), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"[1/2.D(7)^2]2"], [(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"[7^2:3]2"], [(2,4,6,8,10,12,14),(1,11,9)(2,4,8)(3,5,13)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"[7^2:3_3]2"], [(1,13,11,9,7,5,3)(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (2,4)(5,13)(6,12)(9,11),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), "L_7:2(14)=[L(7)_%]2"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,13)(3,10)(4,12)(5,11)(6,9),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13) (7,14),"2L_7(14)=[2]L(7)"], [(1,8)(2,9)(4,11),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),"[2^4]F_21(7)"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (2,4)(5,13)(6,12)(9,11),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), "L(7)[x]2"], [(2,4,6,8,10,12,14),(2,12)(4,10)(6,8),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13) (7,14),"[D(7)^2]2=D(7)wr2"], [(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),"[2^6]7"], [(2,4,6,8,10,12,14),(1,11,9)(2,4,8)(3,5,13)(6,12,10), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8),(1,6,13,8)(2,9,12,5)(3,4,11,10) (7,14),"[1/6_-.F_42(7)^2]2_2"], [(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8),(1,6,13,8)(2,9,12,5)(3,4,11,10) (7,14),"[1/6_+.F_42(7)^2]2_2"], [(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13) (7,14),"[7^2:6]2"], [(2,4,6,8,10,12,14),(1,11,9)(2,4,8)(3,5,13)(6,12,10), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13) (7,14),"[7^2:6_3]2"], [(2,4,6,8,10,12,14),(2,4,8)(6,12,10),(1,8)(2,5)(3,4)(6,13)(7,14)(9,12) (10,11),"1/2[1/2.F_42(7)^2]2"], [(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(7,14),"2^7[1/2]D(7)"], [(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8),"[2^6]D(7)"], [(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),"[2^7]7=2wr7"], [(1,2,3,4,5,6,7,8,9,10,11,12,14),(1,4,3,12,9,10)(2,8,6,11,5,7), (1,12)(2,6)(3,4)(7,11)(9,10)(13,14),"L(14)=PSL(2,13)"], [(2,4,6,8,10,12,14),(2,12)(4,10)(6,8),(1,11,9)(2,4,8)(3,5,13)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"[D(7)^2:3_3]2"], [(2,4,6,8,10,12,14),(2,12)(4,10)(6,8),(1,9,11)(2,4,8)(3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"[D(7)^2:3]2"], [(3,10)(5,12)(6,13)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),(1,8)(2,11)(3,10)(4,9)(5,6)(12,13), "2^3`L_7(14)"], [(3,10)(5,12)(6,13)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),(2,4)(5,13)(6,12)(9,11), "2^3:L_7(14)=[2^3]L(7)=[2^3]L(3,2)"], [(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),"[2^6]F_21(7)"], [(2,4,6,8,10,12,14),(2,4,8)(6,12,10),(1,13)(2,12)(3,11)(4,10)(5,9)(6,8), (1,6,13,8)(2,9,12,5)(3,4,11,10)(7,14),"1/2[F_42(7)^2]2"], [(2,4,6,8,10,12,14),(2,4,8)(6,12,10),(1,13)(2,12)(3,11)(4,10)(5,9)(6,8), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"[1/2.F_42(7)^2]2"], [(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(1,13)(2,12)(3,11)(4,10)(5,9) (6,8),"[2^7]D(7)=2wrD(7)"], [(1,2,3,4,5,6,7,8,9,10,11,12,14),(1,2,4,8,3,6,12,11,9,5,10,7), (1,12)(2,6)(3,4)(7,11)(9,10)(13,14),"L(14):2=PGL(2,13)"], [(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),(1,13)(2,12)(3,11)(4,10)(5,9)(6,8) (7,14),"1/2[2^7]F_42(7)"], [(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),(1,13)(2,12)(3,11)(4,10)(5,9)(6,8), "[2^6]F_42(7)"],[(1,8)(2,9)(4,11),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),(1,8)(2,11)(3,10)(4,9)(5,6)(12,13), "2^4`L_7(14)"],[(1,8)(2,9)(4,11),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),(2,4)(5,13)(6,12)(9,11), "2^4:L_7(14)=[2^4]L(7)"], [(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(1,9,11)(2,4,8)(3,13,5) (6,12,10),"[2^7]F_21(7)=2wrF_21(7)"], [(2,4,6,8,10,12,14),(2,4,8)(6,12,10),(2,12)(4,10)(6,8), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"[F_42(7)^2]2=F_42(7)wr2"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(3,13,5)(6,12,10), (1,8)(2,7)(3,10)(4,11)(5,12)(6,13)(9,14),"2[1/2]S(7)"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(3,13,5)(6,12,10), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"2[x]A(7)"], [(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),(1,13)(2,12)(3,11)(4,10)(5,9)(6,8), "[2^7]F_42(7)=2wrF_42(7)"], [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(3,5)(10,12), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"2[x]S(7)"], [(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),(2,4)(5,13)(6,12)(9,11),"[2^6]L(7)"], [(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,9,11)(2,4,8)(3,13,5)(6,12,10),(2,4)(5,13)(6,12)(9,11), "[2^7]L(7)=2wrL(7)"], [(2,4,6,8,10,12,14),(2,4,8)(6,12,10),(2,4)(6,12), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14),"[L(7)^2]2=L(7)wr2"], [(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(3,13,5)(6,12,10), "[2^6]A(7)"],[(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (3,13,5)(6,12,10),(3,5)(7,14)(10,12),"1/2[2^7]S(7)"], [(2,9)(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(3,13,5)(6,12,10), (3,5)(10,12),"[2^6]S(7)"], [(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(3,13,5)(6,12,10), "[2^7]A(7)=2wrA(7)"], [(7,14),(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),(3,13,5)(6,12,10), (3,5)(10,12),"[2^7]S(7)"], [(2,4,6,8,10,12,14),(8,12,10),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), "[A(7)^2]2=A(7)wr2"], [(2,4,6,8,10,12,14),(8,12,10),(2,14)(7,9),(1,8)(2,9,14,7)(3,10)(4,11) (5,12)(6,13),"1/2[S(7)^2]2"], [(2,4,6,8,10,12,14),(8,12,10),(2,14)(7,9),(1,8)(2,9)(3,10)(4,11)(5,12) (6,13)(7,14),"[1/2.S(7)^2]2"], [(2,4,6,8,10,12,14),(10,12),(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14), "[S(7)^2]2=S(7)wr2"], [(1,13,14),(2,13,14),(3,13,14),(4,13,14),(5,13,14),(6,13,14),(7,13,14), (8,13,14),(9,13,14),(10,13,14),(11,13,14),(12,13,14),"A(14)"], [(1,14),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(10,11), (11,12),(12,13),"S(14)"]]; TRANSPROPERTIES[14]:= [[14,0,1,-1,"02s0B01s0304",[-5014,7],[-12014],[-25014]], [14,0,1,-1,"02s0B01",[-6007,-2014],[-12014],[-25014]], [28,0,1,-1,"06s0B01s0304",[-5014,-7],[-14,5028],[-5014,9028]], [42,0,1,-1,"020004s088001",[-1021,-42,-7],[-3042,-14],[-7042,-1014]], [42,0,1,-1,"020004s088001s0304",[-1042,7],[-3042,-14],[-7042,-1014]], [56,0,1,1,"10s0B01",[7,2028],[14,5028],[1028,3056,5014]], [84,0,1,-1,"060004s07018001s0304",[-1042,-7],[-14,1084],[-1042,28,2084]], [98,0,1,-1,"02s0A4001s0304",[-2014,-49],[-5014,-98],[-4014,-2098]], [112,0,1,-1,"32s0B01s0304" ,[7,2028],[-14,5028],[-5014,4056],[4,[1056,2007,3112,14028]]], [168,0,1,1, "040004s0204s0601" ,[7,84],[14,168],[56,84,168,1028]], [168,0,1,1, "100004s0602s0201" ,[7,84],[14,1084],[56,168,1028,1042]], [196,0,1,1, "04s0404s054001" ,[49,2014],[-2028,-98],[-2098,-28,2014]], [196,0,1,-1, "06s0A4001s0304" ,[-2014,-49],[-98,2028],[-2098,-2014,28]], [294,0,1,-1, "020004s08C001s0304" ,[-49,-42],[-1042,-98],[-1014,-294,-42],[4,[-1294,-1098,-1014,-147,-42]]], [294,0,1,-1, "020004s084001s0304" ,[-49,-42],[-1042,-98],[-1014,-294,-42],[4,[-1098,-1014,-294,-42,2147]]], [336,0,1,-1, "1200040001s0680010080" ,[-42,-21,28],[-42,56,84],[-42,-14,56,84,168]], [336,0,1,-1, "0E0004s020Cs058001s0304" ,[7,84],[-14,168],[84,168,1056]], [336,0,1,-1, "320004s0606008001s0304" ,[7,84],[-14,1084],[-1042,168,1056],[4,[21,112,336,1056,4084]]], [336,0,1,-1, "120004000180s058001s0304" ,[-1042,7],[-14,1084],[-42,-14,56,84,168]], [392,0,1,-1, "26s0404s054801s0304" ,[-2014,-49],[-2028,-98],[-2098,-2014,-28]], [448,0,1,1, "54s0B01" ,[7,2028],[14,5028],[4056,5014]], [588,0,1,1, "040004s0204s04014001" ,[42,49],[-98,-84],[-294,-28,42],[4,[-2147,-294,-196,-28,42]]], [588,0,1,1, "040004s0204s04014001s0310" ,[42,49],[-98,-84],[-294,-28,42],[4,[-1294,-196,-28,42,147]]], [588,0,1,-1, "060004s0701C001s0304" ,[-49,-42],[-98,84],[-294,-42,28],[4,[-1294,-147,-42,28,196]]], [588,0,1,-1, "060004s07014001s0304" ,[-49,-42],[-98,84],[-294,-42,28],[4,[-294,-42,28,196,2147]]], [882,0,1,-1, "020404s08C081s0304" ,[-49,-42],[-1042,-98],[-1014,-294,-42],[4,[-1098,-1014,-294,-42,441]]], [896,0,1,-1, "56s02100088s0601" ,[-2028,-7],[-14,2056],[112,2028,2056],[29,[14],[1028],[1028],[1028]]], [896,0,1,1, "54s02080104s0601" ,[-2028,-7],[14,2056],[112,2028,2056]], [896,0,1,-1, "FEs0B01s0304" ,[7,2028],[-14,5028],[-5014,4056],[4,[2007,4112,14028]]], [1092,1,2,1, "040004s07010001s0308" ,[91],[182],[1182]], [1176,0,1,-1, "260004s0204s0304014801s0304" ,[-49,-42],[-98,-84],[-294,-42,-28],[4,[-2147,-294,-196,-42,-28]]], [1176,0,1,-1, "260004s0204s030401C801s0314" ,[-49,-42],[-98,-84],[-294,-42,-28],[4,[-1294,-196,-147,-42,-28]]], [1344,0,1,1, "1400040005s0402s020111" ,[7,84],[14,168],[56,84,224],[10149,[[12,1001],[96,5012]]]], [1344,0,1,1, "140004000104s0302s0201" ,[7,84],[14,168],[84,224,1028]], [1344,0,1,1, "540004s0602010001" ,[7,84],[14,1084],[168,1042,1056]], [1764,0,1,1, "040404s0204s0380014081s0310" ,[42,49],[-98,-84],[-294,-28,42],[4,[-441,-294,-196,-28,42]]], [1764,0,1,-1, "060404s068001C081s0304" ,[-49,-42],[-98,84],[-294,-42,28],[4,[-294,-42,28,196,441]]], [1792,0,1,-1, "FEs0218018Cs0601s0304" ,[-2028,-7],[-14,2056],[112,2028,2056],[29,[14],[56],[56],[56]]], [2184,1,3,-1, "060004s0208s04010001s032C" ,[91],[-182],[364],[4,[-273,-182,546]]], [2688,0,1,-1, "560004100088s0302018001s0320" ,[-84,-7],[-14,168],[84,112,168],[29,[14],[1084]]], [2688,0,1,1, "540004080104s0302010001s0310" ,[-84,-7],[14,168],[84,112,168]], [2688,0,1,-1, "3E0004000780s030600800131800004" ,[7,84],[-14,168],[56,84,224]], [2688,0,1,-1, "3E000400038Cs0306008001s0304" ,[7,84],[-14,168],[56,84,224],[4,[21,84,336,448,1056]]], [2688,0,1,-1, "FE0006s0606018001s0304" ,[7,84],[-14,1084],[-1042,168,1056],[4,[21,336,1112,4084]]], [3528,0,1,-1, "260484s0204s02048401C883s0314" ,[-49,-42],[-98,-84],[-294,-42,-28],[4,[-441,-294,-196,-42,-28]]], [5040,0,1,-1, "120444000180s028040108001s0208" ,[-42,-7,42],[-14,1084],[-210,-70,84]], [5040,0,1,-1, "120444000180s028040008001s020804" ,[-1042,7],[-14,1084],[-210,-70,84]], [5376,0,1,-1, "FE000618018Cs0306018001s0334" ,[-84,-7],[-14,168],[84,112,168],[29,[14],[168]]], [10080,0,1,-1, "560544000590s02A040118001s020804" ,[-1042,-7],[-14,1084],[-210,-70,84]], [10752,0,1,1, "540004280504s030201000111" ,[7,84],[14,168],[56,84,224],[10149,[[12,1001],[24,96,3012]]]], [21504,0,1,-1, "FE000678078Cs030601800131800004" ,[7,84],[-14,168],[56,84,224],[4,[21,84,112,336,448]]], [56448,0,1,-1, "520504A02180s05D0A100800004" ,[-49,-42],[-98,84],[-294,-14,56]], [161280,0,1,1, "540544280514s02A282410001110010" ,[7,84],[14,168],[84,280]], [322560,0,1,-1, "7E05C578579Cs02ABC2D18001B3001820" ,[-84,-7],[-14,168],[84,280],[22,[7],[84]]], [322560,0,1,1, "540544A82514s02A28341000151201210" ,[-84,-7],[14,168],[84,280]], [322560,0,1,-1, "FE07C678179Cs02E7C651800131803804" ,[7,84],[-14,168],[84,280]], [645120,0,1,-1, "FE07C7F8779Cs02EFC7D18001F3A03A34" ,[-84,-7],[-14,168],[84,280],[22,[-7],[-84]]], [12700800,0,1,-1, "53556CA2A1829510804010D5A900800804" ,[-49,-42],[-98,84],[-294,-70],[29,[1042],[1049]]], [25401600,0,1,1, "55556CAAA556B512A2916555A910200210" ,[42,49],[-98,-84],[-294,-70]], [25401600,0,1,-1, "57556CA2A5D2B512A2D135D5A900800804" ,[-49,-42],[-98,84],[-294,-70],[29,[-1042],[1049]]], [50803200,0,1,-1, "FFFFFDFFFFF7FFBEE7FDFDFFFF10A00A14" ,[-49,-42],[-98,-84],[-294,-70]], [43589145600,1,12,1, "55556CAAA556B553B2936555A955365358" ,[91],[182],[364]], [87178291200,1,14,-1, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC" ,[91],[-182],[364],[4,[1001]]]];