Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W alghom.tst GAP library Thomas Breuer ## ## #Y Copyright (C) 1998, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## To be listed in testinstall.g ## gap> START_TEST("alghom.tst"); # An example of a non-homomorphism which is total but not single-valued. gap> q:= QuaternionAlgebra( Rationals ); <algebra-with-one of dimension 4 over Rationals> gap> gensq:= GeneratorsOfAlgebra( q ); [ e, i, j, k ] gap> f:= FullMatrixAlgebra( Rationals, 2 ); ( Rationals^[ 2, 2 ] ) gap> b:= Basis( f ); CanonicalBasis( ( Rationals^[ 2, 2 ] ) ) gap> map:= AlgebraGeneralMappingByImages( q, f, gensq, b );; gap> ker:= KernelOfAdditiveGeneralMapping( map );; gap> Dimension( ker ); 4 gap> coker:= CoKernelOfAdditiveGeneralMapping( map );; gap> Dimension( coker ); 4 gap> IsTotal(map); true gap> IsSingleValued(map); false # A non-homomorphism which is single-valued but not total gap> map:= AlgebraGeneralMappingByImages( q, f, gensq{[1]}, b{[1]} );; gap> ker:= KernelOfAdditiveGeneralMapping( map );; gap> Dimension( ker ); 0 gap> coker:= CoKernelOfAdditiveGeneralMapping( map );; gap> Dimension( coker ); 0 gap> IsTotal(map); false gap> IsSingleValued(map); true # A non-homomorphism which is neither single-valued nor total gap> map:= AlgebraGeneralMappingByImages( q, f, gensq{[1,2]}, b{[1,2]} );; gap> ker:= KernelOfAdditiveGeneralMapping( map );; gap> Dimension( ker ); 2 gap> coker:= CoKernelOfAdditiveGeneralMapping( map );; gap> Dimension( coker ); 2 gap> IsTotal(map); false gap> IsSingleValued(map); false # An example of an algebra-with-one homomorphism. gap> T:= EmptySCTable( 2, 0 );; gap> SetEntrySCTable( T, 1, 1, [1,1] ); gap> SetEntrySCTable( T, 2, 2, [1,2] ); gap> A:= AlgebraByStructureConstants( Rationals, T );; gap> C:= CanonicalBasis( A );; gap> A:= AsAlgebraWithOne( Rationals, A );; gap> IsomorphismFpAlgebra( A );; gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;; gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;; gap> B:= AlgebraByGenerators( Rationals, [ m1, m2 ] );; gap> B:= AsAlgebraWithOne( Rationals, B );; gap> f:= AlgebraWithOneHomomorphismByImages( A, B, [ C[2] ], [ m2 ] ); [ v.2, v.1+v.2 ] -> [ [ [ 0, 0 ], [ 0, 1 ] ], [ [ 1, 0 ], [ 0, 1 ] ] ] gap> IsBijective( f ); true gap> STOP_TEST( "alghom.tst", 660000); ############################################################################# ## #E