CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
#############################################################################
##
#W  arithlst.tst                GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  2000,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  Exclude from testinstall.g because it runs too long.
##
gap> START_TEST("arithlst.tst");

#############################################################################
##
##  Parametrize the output; if `error' has the value `Error' then only the
##  first error in each call is printed in the `Test' run,
##  if the value is `Print' then all errors are printed.
##
gap> error:= Print;;

#############################################################################
##
##  Define auxiliary functions.
##
gap> RandomSquareArray := function( dim, D )
>   return List( [ 1 .. dim ], i -> List( [ 1 .. dim ], j -> Random( D ) ) );
> end;;
gap> NestingDepthATest := function( obj )
>   if not IsGeneralizedRowVector( obj ) then
>     return 0;
>   elif IsEmpty( obj ) then
>     return 1;
>   else
>     return 1 + NestingDepthATest( obj[ PositionBound( obj ) ] );
>   fi;
> end;;
gap> NestingDepthMTest := function( obj )
>   if not IsMultiplicativeGeneralizedRowVector( obj ) then
>     return 0;
>   elif IsEmpty( obj ) then
>     return 1;
>   else
>     return 1 + NestingDepthMTest( obj[ PositionBound( obj ) ] );
>   fi;
> end;;
gap> ImmutabilityLevel2 := function( list )
>   if not IsList( list ) then
>     if IsMutable( list ) then
>       Error( "<list> is not a list" );
>     else
>       return 0;
>     fi;
>   elif IsEmpty( list ) then
>     # The empty list is defined to have immutability level 0.
>     return 0;
>   elif IsMutable( list ) then
>     return ImmutabilityLevel2( list[ PositionBound( list ) ] );
>   else
>     return 1 + ImmutabilityLevel2( list[ PositionBound( list ) ] );
>   fi;
> end;;
gap> ImmutabilityLevel := function( list )
>   if IsMutable( list ) then
>     return ImmutabilityLevel2( list );
>   else
>     return infinity;
>   fi;
> end;;

##  Note that the two-argument version of `List' is defined only for
##  dense lists.
gap> ListWithPrescribedHoles := function( list, func )
>   local result, i;
> 
>   result:= [];
>   for i in [ 1 .. Length( list ) ] do
>     if IsBound( list[i] ) then
>       result[i]:= func( list[i] );
>     fi;
>   od;
>   return result;
> end;;
gap> SumWithHoles := function( list )
>   local pos, result, i;
> 
>   pos:= PositionBound( list );
>   result:= list[ pos ];
>   for i in [ pos+1 .. Length( list ) ] do
>     if IsBound( list[i] ) then
>       result:= result + list[i];
>     fi;
>   od;
>   return result;
> end;;
gap> ParallelOp := function( op, list1, list2, mode )
>   local result, i;
> 
>   result:= [];
>   for i in [ 1 .. Maximum( Length( list1 ), Length( list2 ) ) ] do
>     if IsBound( list1[i] ) then
>       if IsBound( list2[i] ) then
>         result[i]:= op( list1[i], list2[i] );
>       elif mode = "one" then
>         result[i]:= ShallowCopy( list1[i] );
>       fi;
>     elif IsBound( list2[i] ) and mode = "one" then
>       result[i]:= ShallowCopy( list2[i] );
>     fi;
>   od;
>   return result;
> end;;
gap> ErrorMessage := function( opname, operands, info, is, should )
>   local str, i;
> 
>   str:= Concatenation( opname, "( " );
>   for i in [ 1 .. Length( operands ) - 1 ] do
>     Append( str, operands[i] );
>     Append( str, ", " );
>   od;
>   error( str, operands[ Length( operands ) ], " ):  ", info, ",\n",
>          "should be ", should, " but is ", is, "\n" );
> end;;
gap> CheckMutabilityStatus := function( opname, list )
>   local attr, op, val, sm;
> 
>   attr:= ValueGlobal( Concatenation( opname, "Attr" ) );
>   if ImmutabilityLevel( attr( list ) ) <> infinity then
>     error( opname, "Attr: mutability problem for ", list,
>            " (", ImmutabilityLevel( list ), ")\n" );
>   fi;
>   op:= ValueGlobal( Concatenation( opname, "Op" ) );
>   val:= op( list );
>   if val <> fail and IsCopyable( val ) and not IsMutable( val ) then
>     error( opname, "Op: mutability problem for ", list,
>            " (", ImmutabilityLevel( list ), ")\n" );
>   fi;
>   sm:= ValueGlobal( Concatenation( opname, "SM" ) );
>   val:= sm( list );
>   if     val <> fail
>      and IsCopyable( val )
>      and ImmutabilityLevel( sm( list ) ) <> ImmutabilityLevel( list ) then
>     error( opname, "SM: mutability problem for ", list,
>            " (", ImmutabilityLevel( list ), ")\n" );
>   fi;
> end;;

##  Check whether a unary operation preserves the compression status.
gap> COMPRESSIONS := [ "Is8BitMatrixRep", "Is8BitVectorRep",
>                      "IsGF2VectorRep", "IsGF2MatrixRep" ];;
gap> CheckCompressionStatus := function( opname, list )
>   local value, namefilter, filter;
> 
>   value:= ValueGlobal( opname )( list );
>   if value <> fail then
>     for namefilter in COMPRESSIONS do
>       filter:= ValueGlobal( namefilter );
>       if filter( list ) and not filter( value ) then
>         error( opname, " does not preserve `", namefilter, "'\n" );
>       fi;
>     od;
>   fi;
> end;;
gap> CompareTest := function( opname, operands, result, desired )
>   local i, j, val;
> 
>   # Check that the same positions are bound,
>   # and that corresponding entries are equal.
>   if IsList( result ) and IsList( desired ) then
>     if Length( result ) <> Length( desired ) then
>       ErrorMessage( opname, operands, "lengths differ",
>                     Length( result ), Length( desired ) );
>     fi;
>     for i in [ 1 .. Length( result ) ] do
>       if IsBound( result[i] ) then
>         if not IsBound( desired[i] ) then
>           ErrorMessage( opname, operands,
>                         Concatenation( "bound at ", String( i ) ),
>                         result[i], "unbound" );
>         elif result[i] <> desired[i] then
>           ErrorMessage( opname, operands,
>                         Concatenation( "error at ", String( i ) ),
>                         result[i], desired[i] );
>         fi;
>       elif IsBound( desired[i] ) then
>           ErrorMessage( opname, operands,
>                         Concatenation( "unbound at ", String( i ) ),
>                         "unbound", desired[i] );
>       fi;
>     od;
>   elif IsList( result ) or IsList( desired ) then
>     ErrorMessage( opname, operands, "list vs. non-list", result, desired );
>   elif result <> desired then
>     ErrorMessage( opname, operands, "two non-lists", result, desired );
>   fi;
> 
>   # Check the mutability status.
>   if     Length( operands ) = 2
>      and IsList( result ) and IsCopyable( result )
>      and ImmutabilityLevel( result )
>          <> Minimum( List( operands, ImmutabilityLevel ) ) 
>      and not (ImmutabilityLevel(result)=infinity and
>                NestingDepthM(result) = 
>                       Minimum( List( operands, ImmutabilityLevel ) )) then
>     error( opname, ": mutability problem for ", operands[1], " (",
>            ImmutabilityLevel( operands[1] ), ") and ", operands[2], " (",
>            ImmutabilityLevel( operands[2] ), ")\n" );
>   fi;
> end;;

#############################################################################
##
#F  ZeroTest( <list> )
##
##  The zero of a list $x$ in `IsGeneralizedRowVector' is defined as
##  the list whose entry at position $i$ is the zero of $x[i]$
##  if this entry is bound, and is unbound otherwise.
##
gap> ZeroTest := function( list )
>   if IsGeneralizedRowVector( list ) then
>     CompareTest( "Zero", [ list ],
>                  Zero( list ),
>                  ListWithPrescribedHoles( list, Zero ) );
>     CheckMutabilityStatus( "Zero", list );
>     CheckCompressionStatus( "ZeroAttr", list );
>     CheckCompressionStatus( "ZeroSM", list );
>   fi;
> end;;

#############################################################################
##
#F  AdditiveInverseTest( <list> )
##
##  The additive inverse of a list $x$ in `IsGeneralizedRowVector' is defined
##  as the list whose entry at position $i$ is the additive inverse of $x[i]$
##  if this entry is bound, and is unbound otherwise.
##
gap> AdditiveInverseTest := function( list )
>   if IsGeneralizedRowVector( list ) then
>     CompareTest( "AdditiveInverse", [ list ],
>                  AdditiveInverse( list ),
>                  ListWithPrescribedHoles( list, AdditiveInverse ) );
>     CheckMutabilityStatus( "AdditiveInverse", list );
>     CheckCompressionStatus( "AdditiveInverseAttr", list );
>     CheckCompressionStatus( "AdditiveInverseSM", list );
>   fi;
> end;;

#############################################################################
##
#F  AdditionTest( <left>, <right> )
##
##  If $x$ and $y$ are in `IsGeneralizedRowVector' and have the same
##  additive nesting depth (see~"NestingDepthA"),
##  % By definition, this depth is nonzero.
##  the sum $x + y$ is defined *pointwise*, in the sense that the result is a
##  list whose entry at position $i$ is $x[i] + y[i]$ if these entries are
##  bound,
##  is a shallow copy (see~"ShallowCopy") of $x[i]$ or $y[i]$ if the other
##  argument is not bound at position $i$,
##  and is unbound if both $x$ and $y$ are unbound at position $i$.
##
##  If $x$ is in `IsGeneralizedRowVector' and $y$ is either not a list or is
##  in `IsGeneralizedRowVector' and has lower additive nesting depth,
##  the sum $x + y$ is defined as a list whose entry at position $i$ is
##  $x[i] + y$ if $x$ is bound at position $i$, and is unbound if not.
##  The equivalent holds in the reversed case,
##  where the order of the summands is kept,
##  as addition is not always commutative.
##
##  For two {\GAP} objects $x$ and $y$ of which one is in
##  `IsGeneralizedRowVector' and the other is either not a list or is
##  also in `IsGeneralizedRowVector',
##  $x - y$ is defined as $x + (-y)$.
##
gap> AdditionTest := function( left, right )
>   local depth1, depth2, desired;
> 
>   if IsGeneralizedRowVector( left ) and IsGeneralizedRowVector( right ) then
>     depth1:= NestingDepthATest( left );
>     depth2:= NestingDepthATest( right );
>     if depth1 = depth2 then
>       desired:= ParallelOp( \+, left, right, "one" );
>     elif depth1 < depth2 then
>       desired:= ListWithPrescribedHoles( right, x -> left + x );
>     else
>       desired:= ListWithPrescribedHoles( left, x -> x + right );
>     fi;
>   elif IsGeneralizedRowVector( left ) and not IsList( right ) then
>     desired:= ListWithPrescribedHoles( left, x -> x + right );
>   elif not IsList( left ) and IsGeneralizedRowVector( right ) then
>     desired:= ListWithPrescribedHoles( right, x -> left + x );
>   else
>     return;
>   fi;
>   CompareTest( "Addition", [ left, right ], left + right, desired );
>   if AdditiveInverse( right ) <> fail then
>     CompareTest( "Subtraction", [ left, right ], left - right,
>                  left + ( - right ) );
>   fi;
> end;;

#############################################################################
##
#F  OneTest( <list> )
##
gap> OneTest := function( list )
>   if IsOrdinaryMatrix( list ) and Length( list ) = Length( list[1] ) then
>     CheckMutabilityStatus( "One", list );
>     CheckCompressionStatus( "OneAttr", list );
>     CheckCompressionStatus( "OneSM", list );
>   fi;
> end;;

#############################################################################
##
#F  InverseTest( <obj> )
##
gap> InverseTest := function( list )
>   if IsOrdinaryMatrix( list ) and Length( list ) = Length( list[1] ) then
>     CheckMutabilityStatus( "Inverse", list );
>     CheckCompressionStatus( "InverseAttr", list );
>     CheckCompressionStatus( "InverseSM", list );
>   fi;
> end;;

#############################################################################
##
#F  TransposedMatTest( <obj> )
##
gap> TransposedMatTest := function( list )
>   if IsOrdinaryMatrix( list ) then
>     CheckCompressionStatus( "TransposedMatAttr", list );
>     CheckCompressionStatus( "TransposedMatOp", list );
>   fi;
> end;;

#############################################################################
##
#F  MultiplicationTest( <left>, <right> )
##
##  There are three possible computations that might be triggered by a
##  multiplication involving a list in
##  `IsMultiplicativeGeneralizedRowVector'.
##  Namely, $x * y$ might be
##  \beginlist
##  \item{(I)}
##      the inner product $x[1] * y[1] + x[2] * y[2] + \cdots + x[n] * y[n]$,
##      where summands are omitted for which the entry in $x$ or $y$ is
##      unbound
##      (if this leaves no summand then the multiplication is an error),
##      or
##  \item{(L)}
##      the left scalar multiple, i.e., a list whose entry at position $i$ is
##      $x * y[i]$ if $y$ is bound at position $i$, and is unbound if not, or
##  \item{(R)}
##      the right scalar multiple, i.e., a list whose entry at position $i$
##      is $x[i] * y$ if $x$ is bound at position $i$, and is unbound if not.
##  \endlist
##  
##  Our aim is to generalize the basic arithmetic of simple row vectors and
##  matrices, so we first summarize the situations that shall be covered.
##  
##  \beginexample
##      | scl   vec   mat
##  ---------------------
##  scl |       (L)   (L)
##  vec | (R)   (I)   (I)
##  mat | (R)   (R)   (R)
##  \endexample
##  
##  This means for example that the product of a scalar (scl)
##  with a vector (vec) or a matrix (mat) is computed according to (L).
##  Note that this is asymmetric.
##  
##  Now we can state the general multiplication rules.
##  
##  If exactly one argument is in `IsMultiplicativeGeneralizedRowVector'
##  then we regard the other argument (which is then not a list) as a scalar,
##  and specify result (L) or (R), depending on ordering.
##  
##  In the remaining cases, both $x$ and $y$ are in
##  `IsMultiplicativeGeneralizedRowVector', and we distinguish the
##  possibilities by their multiplicative nesting depths.
##  An argument with *odd* multiplicative nesting depth is regarded as a
##  vector, and an argument with *even* multiplicative nesting depth is
##  regarded as a scalar or a matrix.
##  
##  So if both arguments have odd multiplicative nesting depth,
##  we specify result (I).
##  
##  If exactly one argument has odd nesting depth,
##  the other is treated as a scalar if it has lower multiplicative nesting
##  depth, and as a matrix otherwise.
##  In the former case, we specify result (L) or (R), depending on ordering;
##  in the latter case, we specify result (L) or (I), depending on ordering.
##  
##  We are left with the case that each argument has even multiplicative
##  nesting depth.
##  % By definition, this depth is nonzero.
##  If the two depths are equal, we treat the computation as a matrix product,
##  and specify result (R).
##  Otherwise, we treat the less deeply nested argument as a scalar and the
##  other as a matrix, and specify result (L) or (R), depending on ordering.
##  
##  For two {\GAP} objects $x$ and $y$ of which one is in
##  `IsMultiplicativeGeneralizedRowVector' and the other is either not a list
##  or is also in `IsMultiplicativeGeneralizedRowVector',
##  $x / y$ is defined as $x * y^{-1}$.
##
gap> MultiplicationTest := function( left, right )
>   local depth1, depth2, par, desired;
> 
>   if IsMultiplicativeGeneralizedRowVector( left ) and
>      IsMultiplicativeGeneralizedRowVector( right ) then
>     depth1:= NestingDepthMTest( left );
>     depth2:= NestingDepthMTest( right );
>     if IsOddInt( depth1 ) then
>       if IsOddInt( depth2 ) or depth1 < depth2 then
>         # <vec> * <vec> or <vec> * <mat>
>         par:= ParallelOp( \*, left, right, "both" );
>         if IsEmpty( par ) then
>           error( "vector multiplication <left>*<right> with empty ",
>                  "support:\n", left, "\n", right, "\n" );
>         else
>           desired:= SumWithHoles( par );
>         fi;
>       else
>         # <vec> * <scl>
>         desired:= ListWithPrescribedHoles( left, x -> x * right );
>       fi;
>     elif IsOddInt( depth2 ) then
>       if depth1 < depth2 then
>         # <scl> * <vec>
>         desired:= ListWithPrescribedHoles( right, x -> left * x );
>       else
>         # <mat> * <vec>
>         desired:= ListWithPrescribedHoles( left, x -> x * right );
>       fi;
>     elif depth1 = depth2 then
>       # <mat> * <mat>
>       desired:= ListWithPrescribedHoles( left, x -> x * right );
>     elif depth1 < depth2 then
>       # <scl> * <mat>
>       desired:= ListWithPrescribedHoles( right, x -> left * x );
>     else
>       # <mat> * <scl>
>       desired:= ListWithPrescribedHoles( left, x -> x * right );
>     fi;
>   elif IsMultiplicativeGeneralizedRowVector( left ) and
>        not IsList( right ) then
>     desired:= ListWithPrescribedHoles( left, x -> x * right );
>   elif IsMultiplicativeGeneralizedRowVector( right ) and
>        not IsList( left ) then
>     desired:= ListWithPrescribedHoles( right, x -> left * x );
>   else
>     return;
>   fi;
>   CompareTest( "Multiplication", [ left, right ], left * right, desired );
>   if     IsMultiplicativeGeneralizedRowVector( right )
>      and IsOrdinaryMatrix( right )
>      and Length( right ) = Length( right[1] )
>      and NestingDepthM( right ) = 2
>      and Inverse( right ) <> fail then
>     CompareTest( "Division", [ left, right ], left / right,
>                  left * ( right^-1 ) );
>   fi;
> end;;

#############################################################################
##
#F  RunTest( <func>, <arg1>, ... )
##
##  Call <func> for the remaining arguments, or for shallow copies of them
##  or immutable copies.
##
gap> RunTest := function( arg )
>   local combinations, i, entry;
> 
>   combinations:= [ ];
>   for i in [ 2 .. Length( arg ) ] do
>     entry:= [ arg[i] ];
>     if IsCopyable( arg[i] ) then
>       Add( entry, ShallowCopy( arg[i] ) );
>     fi;
>     if IsMutable( arg[i] ) then
>       Add( entry, Immutable( arg[i] ) );
>     fi;
>     Add( combinations, entry );
>   od;
>   for entry in Cartesian( combinations ) do
>     CallFuncList( arg[1], entry );
>   od;
> end;;

#############################################################################
##
#F  TestOfAdditiveListArithmetic( <R>, <dim> )
##
##  For a ring or list of ring elements <R> (such that `Random( <R> )'
##  returns an element in <R> and such that not all elements in <R> are
##  zero),
##  `TestOfAdditiveListArithmetic' performs the following tests of additive
##  arithmetic operations.
##  \beginlist
##  \item{1.}
##      If the elements of <R> are in `IsGeneralizedRowVector' then
##      it is checked whether `Zero', `AdditiveInverse', and `\+'
##      obey the definitions.
##  \item{2.}
##      If the elements of <R> are in `IsGeneralizedRowVector' then
##      it is checked whether the sum of elements in <R> and (non-dense)
##      plain lists of integers obeys the definitions.
##  \item{3.}
##      Check `Zero' and `AdditiveInverse' for nested plain lists of elements
##      in <R>, and `\+' for elements in <R> and nested plain lists of
##      elements in <R>.
##  \endlist
##
gap> TestOfAdditiveListArithmetic := function( R, dim )
>   local r, i, intlist, j, vec1, vec2, mat1, mat2, row;
> 
>   r:= Random( R );
>   if IsGeneralizedRowVector( r ) then
> 
>     # tests of kind 1.
>     for i in [ 1 .. 10 ] do
>       RunTest( ZeroTest, Random( R ) );
>       RunTest( AdditiveInverseTest, Random( R ) );
>       RunTest( AdditionTest, Random( R ), Random( R ) );
>     od;
> 
>     # tests of kind 2.
>     for i in [ 1 .. 10 ] do
>       RunTest( AdditionTest, Random( R ), [] );
>       RunTest( AdditionTest, [], Random( R ) );
>       r:= Random( R );
>       intlist:= List( [ 1 .. Length( r ) + Random( [ -1 .. 1 ] ) ],
>                       x -> Random( Integers ) );
>       for j in [ 1 .. Int( Length( r ) / 3 ) ] do
>         Unbind( intlist[ Random( [ 1 .. Length( intlist ) ] ) ] );
>       od;
>       RunTest( AdditionTest, r, intlist );
>       RunTest( AdditionTest, intlist, r );
>     od;
> 
>   fi;
> 
>   # tests of kind 3.
>   for i in [ 1 .. 10 ] do
> 
>     vec1:= List( [ 1 .. dim ], x -> Random( R ) );
>     vec2:= List( [ 1 .. dim ], x -> Random( R ) );
> 
>     RunTest( ZeroTest, vec1 );
>     RunTest( AdditiveInverseTest, vec1 );
>     RunTest( AdditionTest, vec1, Random( R ) );
>     RunTest( AdditionTest, Random( R ), vec2 );
>     RunTest( AdditionTest, vec1, vec2 );
>     RunTest( AdditionTest, vec1, [] );
>     RunTest( AdditionTest, [], vec2 );
>     Unbind( vec1[ dim ] );
>     RunTest( AdditionTest, vec1, vec2 );
>     Unbind( vec2[ Random( [ 1 .. dim ] ) ] );
>     RunTest( ZeroTest, vec2 );
>     RunTest( AdditiveInverseTest, vec1 );
>     RunTest( AdditiveInverseTest, vec2 );
>     RunTest( AdditionTest, vec1, vec2 );
>     Unbind( vec1[ Random( [ 1 .. dim ] ) ] );
>     RunTest( AdditionTest, vec1, vec2 );
> 
>     mat1:= RandomSquareArray( dim, R );
>     mat2:= RandomSquareArray( dim, R );
> 
>     RunTest( ZeroTest, mat1 );
>     RunTest( AdditiveInverseTest, mat1 );
>     RunTest( TransposedMatTest, mat1 );
>     RunTest( AdditionTest, mat1, Random( R ) );
>     RunTest( AdditionTest, Random( R ), mat2 );
>     RunTest( AdditionTest, vec1, mat2 );
>     RunTest( AdditionTest, mat1, vec2 );
>     RunTest( AdditionTest, mat1, mat2 );
>     RunTest( AdditionTest, mat1, [] );
>     RunTest( AdditionTest, [], mat2 );
>     Unbind( mat1[ dim ] );
>     row:= mat1[ Random( [ 1 .. dim-1 ] ) ];
>     if not IsLockedRepresentationVector( row ) then
>       Unbind( row[ Random( [ 1 .. dim ] ) ] );
>     fi;
>     RunTest( AdditionTest, mat1, mat2 );
>     Unbind( mat2[ Random( [ 1 .. dim ] ) ] );
>     RunTest( ZeroTest, mat2 );
>     RunTest( AdditiveInverseTest, mat1 );
>     RunTest( AdditiveInverseTest, mat2 );
>     RunTest( TransposedMatTest, mat2 );
>     RunTest( AdditionTest, mat1, mat2 );
>     Unbind( mat1[ Random( [ 1 .. dim ] ) ] );
>     RunTest( AdditionTest, mat1, mat2 );
> 
>   od;
> end;;

#############################################################################
##
#F  TestOfMultiplicativeListArithmetic( <R>, <dim> )
##
##  For a ring or list of ring elements <R> (such that `Random( <R> )'
##  returns an element in <R> and such that not all elements in <R> are
##  zero),
##  `TestOfMultiplicativeListArithmetic' performs the following tests of
##  multiplicative arithmetic operations.
##  \beginlist
##  \item{1.}
##      If the elements of <R> are in `IsMultiplicativeGeneralizedRowVector'
##      then it is checked whether `One', `Inverse', and `\*'
##      obey the definitions.
##  \item{2.}
##      If the elements of <R> are in `IsMultiplicativeGeneralizedRowVector'
##      then it is checked whether the product of elements in <R> and
##      (non-dense) plain lists of integers obeys the definitions.
##      (Note that contrary to the additive case, we need not chack the
##      special case of a multiplication with an empty list.)
##  \item{3.}
##      Check `One' and `Inverse' for nested plain lists of elements
##      in <R>, and `\*' for elements in <R> and nested plain lists of
##      elements in <R>.
##  \endlist
##
gap> TestOfMultiplicativeListArithmetic := function( R, dim )
>   local r, i, intlist, j, vec1, vec2, mat1, mat2, row;
> 
>   r:= Random( R );
>   if IsMultiplicativeGeneralizedRowVector( r ) then
> 
>     # tests of kind 1.
>     for i in [ 1 .. 10 ] do
>       RunTest( OneTest, Random( R ) );
>       RunTest( InverseTest, Random( R ) );
>       RunTest( MultiplicationTest, Random( R ), Random( R ) );
>     od;
> 
>     # tests of kind 2.
>     for i in [ 1 .. 10 ] do
>       r:= Random( R );
>       intlist:= List( [ 1 .. Length( r ) + Random( [ -1 .. 1 ] ) ],
>                       x -> Random( Integers ) );
>       for j in [ 1 .. Int( Length( r ) / 3 ) ] do
>         Unbind( intlist[ Random( [ 1 .. Length( intlist ) ] ) ] );
>       od;
>       RunTest( MultiplicationTest, r, intlist );
>       RunTest( MultiplicationTest, intlist, r );
>     od;
> 
>   fi;
> 
>   # tests of kind 3.
>   for i in [ 1 .. 10 ] do
> 
>     vec1:= List( [ 1 .. dim ], x -> Random( R ) );
>     vec2:= List( [ 1 .. dim ], x -> Random( R ) );
> 
>     RunTest( OneTest, vec1 );
>     RunTest( InverseTest, vec1 );
>     RunTest( MultiplicationTest, vec1, Random( R ) );
>     RunTest( MultiplicationTest, Random( R ), vec2 );
>     RunTest( MultiplicationTest, vec1, vec2 );
>     Unbind( vec1[ dim ] );
>     RunTest( MultiplicationTest, vec1, vec2 );
>     Unbind( vec2[ Random( [ 1 .. dim ] ) ] );
>     RunTest( OneTest, vec2 );
>     RunTest( InverseTest, vec1 );
>     RunTest( InverseTest, vec2 );
>     RunTest( MultiplicationTest, vec1, vec2 );
>     Unbind( vec1[ Random( [ 1 .. dim ] ) ] );
>     RunTest( MultiplicationTest, vec1, vec2 );
> 
>     mat1:= RandomSquareArray( dim, R );
>     mat2:= RandomSquareArray( dim, R );
> 
>     RunTest( OneTest, mat1 );
>     RunTest( InverseTest, mat1 );
>     RunTest( MultiplicationTest, mat1, Random( R ) );
>     RunTest( MultiplicationTest, Random( R ), mat2 );
>     RunTest( MultiplicationTest, vec1, mat2 );
>     RunTest( MultiplicationTest, mat1, vec2 );
>     RunTest( MultiplicationTest, mat1, mat2 );
>     Unbind( mat1[ dim ] );
>     row:= mat1[ Random( [ 1 .. dim-1 ] ) ];
>     if not IsLockedRepresentationVector( row ) then
>       Unbind( row[ Random( [ 1 .. dim ] ) ] );
>     fi;
>     RunTest( MultiplicationTest, vec1, mat2 );
>     RunTest( MultiplicationTest, mat1, vec2 );
>     RunTest( MultiplicationTest, mat1, mat2 );
>     Unbind( mat2[ Random( [ 1 .. dim ] ) ] );
>     RunTest( OneTest, mat2 );
>     RunTest( InverseTest, mat1 );
>     RunTest( InverseTest, mat2 );
>     RunTest( MultiplicationTest, mat1, mat2 );
>     Unbind( mat1[ Random( [ 1 .. dim ] ) ] );
>     RunTest( MultiplicationTest, mat1, mat2 );
> 
>   od;
> end;;

#############################################################################
##
#F  TestOfListArithmetic( <R>, <dimlist> )
##
gap> TestOfListArithmetic := function( R, dimlist )
>   local n, len, bools, i;
> 
>   len:= 100;
>   bools:= [ true, false ];
> 
>   for n in dimlist do
>     TestOfAdditiveListArithmetic( R, n );
>     TestOfMultiplicativeListArithmetic( R, n );
>     R:= List( [ 1 .. len ], x -> Random( R ) );
>     if IsMutable( R[1] ) and not ForAll( R, IsZero ) then
>       for i in [ 1 .. len ] do
>         if Random( bools ) then
>           R[i]:= Immutable( R[i] );
>         fi;
>       od;
>       TestOfAdditiveListArithmetic( R, n );
>       TestOfMultiplicativeListArithmetic( R, n );
>     fi;
>   od;
> end;;

#############################################################################
##
##  Here the tests start.
##  (The dimension should always be at least 4,
##  in order to avoid errors in inner products of non-dense lists.)
##

# over `GF(2)', `GF(3)', `GF(4)' (compressed elements)
gap> stddims:= [ 4, 5, 6, 8, 17, 32, 33 ];;
gap> TestOfListArithmetic( GF(2), stddims );
gap> TestOfListArithmetic( GF(3), stddims );
gap> TestOfListArithmetic( GF(4), stddims );

# over another small finite field (compressed elements)
gap> TestOfListArithmetic( GF(25), stddims );

# over a big finite (prime) field
gap> p:= NextPrimeInt( MAXSIZE_GF_INTERNAL );;
gap> TestOfListArithmetic( GF( p ), stddims );

# over the rationals
gap> TestOfListArithmetic( Rationals, [ 4 ] );

# over a residue class ring
gap> TestOfListArithmetic( Integers mod 12, [ 4 ] );

# over a ring of non-internal objects
gap> A:= QuaternionAlgebra( Rationals );;
gap> TestOfListArithmetic( A, [ 4 ] );

# over a matrix space/algebra over `GF(2)' (compressed elements)
gap> TestOfListArithmetic( GF(2)^[2,3], [ 4, 5, 6 ] );

# over a matrix space/algebra over another small finite field
# (compressed elements)
gap> TestOfListArithmetic( GF(5)^[2,3], [ 4, 5, 6 ] );

# over a matrix space/algebra over a big finite (prime) field
gap> p:= NextPrimeInt( MAXSIZE_GF_INTERNAL );;
gap> TestOfListArithmetic( GF( p )^[2,3], [ 4, 5, 6 ] );

# over a matrix space/algebra over the rationals
gap> TestOfListArithmetic( Rationals^[2,3], [ 4, 5, 6 ] );

# over a class function space (the elements are not mult. grvs)
gap> TestOfAdditiveListArithmetic( Irr( SymmetricGroup( 4 ) ), 4 );

# over a space of Lie matrices (the elements are not mult. grvs)
gap> TestOfAdditiveListArithmetic( LieAlgebra( GF(3)^[2,2] ), 4 );

# # over a group of block matrices
# gap> hom:= IrreducibleRepresentations( SymmetricGroup( 4 ) )[3];;
# gap> ind:= InducedRepresentation( hom, SymmetricGroup( 5 ) );;
# gap> blockmats:= Elements( Image( ind ) );;
# gap> # Note that `Random' for the matrix group would construct a matrix
# gap> # via the homomorphism to a perm. group, and this would not be a
# gap> # block matrix!
# gap> TestOfAdditiveListArithmetic( blockmats, 4 );
# gap> TestOfMultiplicativeListArithmetic( blockmats, 4 );
gap> STOP_TEST( "arithlst.tst", 4016930000);

#############################################################################
##
#E