build open-axiom
1278 (|AbelianSemiGroup|) |category| (((|AbelianSemiGroup|) (|Category|)) (T |AbelianSemiGroup|)) (T) (|Join| (|SetCategory|) (CATEGORY |domain| (SIGNATURE + ($ $ $)) (SIGNATURE * ($ (|PositiveInteger|) $)))) "catdef.spad" ((+ (*1 *1 *1 *1) (|ofCategory| *1 (|AbelianSemiGroup|))) (* (*1 *1 *2 *1) (AND (|ofCategory| *1 (|AbelianSemiGroup|)) (|isDomain| *2 (|PositiveInteger|))))) ((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT)) (|hash| (((|SingleInteger|) $) 12 T ELT)) (|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT)) (= (#1# 8 T ELT)) (+ (($ $ $) 18 T ELT)) (* (($ (|PositiveInteger|) $) 17 T ELT))) ABELSG (((|SetCategory|) . T)) (((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T) ((|Type|) . T)) ((|constructor| (NIL "the class of all additive (commutative) semigroups,{} \\spadignore{i.e.} a set with a commutative and associative operation \\spadop{+}. \\blankline")) (* (($ (|PositiveInteger|) $) "\\spad{n*x} computes the left-multiplication of \\spad{x} by the positive integer \\spad{n}. This is equivalent to adding \\spad{x} to itself \\spad{n} times.")) (+ (($ $ $) "\\spad{x+y} computes the sum of \\spad{x} and \\spad{y}."))) (("documentation" 0 825) ("ancestors" 0 728) ("parents" 0 704) ("abbreviation" 0 697) ("predicates" 0 NIL) ("attributes" 0 NIL) ("signaturesAndLocals" 0 NIL) ("superDomain" 0 NIL) ("operationAlist" 0 428) ("modemaps" 0 256) ("sourceFile" 0 242) ("constructorCategory" 0 118) ("dualSignature" 0 114) ("constructorModemap" 0 53) ("constructorKind" 0 42) ("constructorForm" 0 21))