build open-axiom
1278
(|AbelianSemiGroup|)
|category|
(((|AbelianSemiGroup|) (|Category|)) (T |AbelianSemiGroup|))
(T)
(|Join| (|SetCategory|)
(CATEGORY |domain| (SIGNATURE + ($ $ $))
(SIGNATURE * ($ (|PositiveInteger|) $))))
"catdef.spad"
((+ (*1 *1 *1 *1) (|ofCategory| *1 (|AbelianSemiGroup|)))
(* (*1 *1 *2 *1)
(AND (|ofCategory| *1 (|AbelianSemiGroup|))
(|isDomain| *2 (|PositiveInteger|)))))
((~= (#1=((|Boolean|) $ $) 7 T ELT)) (|latex| (((|String|) $) 11 T ELT))
(|hash| (((|SingleInteger|) $) 12 T ELT))
(|coerce| (((|OutputForm|) $) 13 T ELT)) (|before?| (#1# 6 T ELT))
(= (#1# 8 T ELT)) (+ (($ $ $) 18 T ELT))
(* (($ (|PositiveInteger|) $) 17 T ELT)))
ABELSG
(((|SetCategory|) . T))
(((|BasicType|) . T) ((|CoercibleTo| (|OutputForm|)) . T) ((|SetCategory|) . T)
((|Type|) . T))
((|constructor|
(NIL
"the class of all additive (commutative) semigroups,{} \\spadignore{i.e.} a set with a commutative and associative operation \\spadop{+}. \\blankline"))
(*
(($ (|PositiveInteger|) $)
"\\spad{n*x} computes the left-multiplication of \\spad{x} by the positive integer \\spad{n}. This is equivalent to adding \\spad{x} to itself \\spad{n} times."))
(+ (($ $ $) "\\spad{x+y} computes the sum of \\spad{x} and \\spad{y}.")))
(("documentation" 0 825) ("ancestors" 0 728) ("parents" 0 704)
("abbreviation" 0 697) ("predicates" 0 NIL) ("attributes" 0 NIL)
("signaturesAndLocals" 0 NIL) ("superDomain" 0 NIL) ("operationAlist" 0 428)
("modemaps" 0 256) ("sourceFile" 0 242) ("constructorCategory" 0 118)
("dualSignature" 0 114) ("constructorModemap" 0 53) ("constructorKind" 0 42)
("constructorForm" 0 21))