Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

build open-axiom

54514 views
#!/projects/77750c71-ec7b-4962-bf55-a49ff5065fb6/open-axiom-build/x86_64-unknown-linux-gnu/bin/bootsys --script
# FASL
  compiled from "/projects/77750c71-ec7b-4962-bf55-a49ff5065fb6/open-axiom-build/src/interp/bc-misc.clisp"
  using SBCL version 1.2.14.debian
�X86-64N
1.2.14.debian2(:GENCGC :SB-PACKAGE-LOCKS :SB-THREAD :SB-UNICODE)PPROCLAIMPOPTIMIZEPSPEED	8#�	AxiomCore�COMPILE-TIME-P7��importModule�bc-util	8#�#�#�PSETP	*PACKAGE*�BOOT	,8�SB-IMPL�%DEFUN�BOOT�
	bcDrawIt2>�{}	�=	�{}..	�CONCAT<#"�#NTSTANDARDTMINIMAL##`#$"#$"�#$"\	TEXTERNAL�SB-C�TL-XEP	q	0
	#N"�"�#W##$"#$"�#$"\	0
	\	s	0		��1�EH��uWH�e�L��L��L��I�L$`H�M�H�����I��H�5����L�M�H�
}���H�M�L�E�H�
^���H�M�H�k�����u�`	�"�
ind�
a�
b	PFUNCTION	P*	##	\	\	�.##�X/projects/77750c71-ec7b-4962-bf55-a49ff5065fb6/open-axiom-build/src/interp/bc-misc.clisp	o	0	8�
bcIndefiniteIntegrate>3�
$Indefinite Integration Basic Command�
htInitPage<�
domainConditions�
isDomain�
EM�
$EmptyMode	6�
S�
String		6�
SY�
Symbol			�
text�	\newline 		C�\menuitemstyle{}\tab{2}		C�5Enter the {\em function} you would like to integrate:		C�\newline\tab{2} 		�
	bcStrings#-�1/(x**2 + 6)	�
	integrand7		C�
\blankline		EGC�(Enter the {\em variable of integration}:		C�\tab{37}		L#
�
x�
symbol>		�
doneButton�Continue	�
bcIndefiniteIntegrateGen	!
	�
htMakePage<�
htShowPage<#"�#D##`\	2	0
	#D"�"�#M#\	20
	\	20		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	�j2')	a###	`###	4###	\	\	�q##/00	8]>sN�
htpLabelInputString<X�
integrate(	�,	�
)<�
bcGen<#"#I##`#$"\	]	0
	#M"�"!#V##$"M\	]0
	\	]0		�!1�EH����H�e�H�U�I�L$`H�M�� � H�\$�H��H�U�H�=L���H�M����H�+H���P	HB�H��H��H�\$�H��H�U�H�=)���H�u�H�����H�+H���P	HB�H�u�H��H��H�\$�H��(H�����H�5����H�K�H�����H�C�H������
H�+H���P	HB�H�������u�`	��]�
htPage	'	)	#####	w####	s#####	s#####	\	\	��##/00	8�
bcDefiniteIntegrate>��
"Definite Integration Basic Command4<BEGIKPREGTVZREGC�!\newline Enter {\em lower limit}:		�
radioButtons�
fromButton�	�Minus infinity	�

minusInfinity	�C�A finite point:\tab{15}		L#
#�
from7�
bcOptional			�
	fromPoint		REGC�+\indent{2}\newline Enter {\em upper limit}:		��
toButton��
Plus infinity	�
plusInfinity	�C�	L#
�
y�
to7�			�
toPoint		[\�
bcDefiniteIntegrateGen	!	`<a<#"�#D##`\	�	0
	#D"�"�#M#\	�0
	\	�0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	���ka###	`###	4###	\	\	��##/00	8�>�Ns<X��
htpButtonValue<�����
%plusInfinity	� = 	�..	<tu�)	w<��%minusInfinity	#"e#I##`#$"\	�	0
	#M"�"g#V##$"M\	�0
	\	�0		�g1�EH��� H�e�H�U�I�L$`H�M�� � H�E� H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H;w����BH�\$�H��H�U�H�=e���H�6����H�+H���P	HB�H��H�u�H�\$�H��H�U�H�=9���H�����H�+H���P	HB�H;!�����H�
���H�U�H�u�H�\$�H��(H�=���H�
���H�C�H�K�H�����
H�+H���P	HB�H��H�}�H�\$�H��(H�����H�5����H�K�H�����H�C�H������
H�+H���P	HB�H�������u�`	H�\$�H��H�U�H�=����H�)����H�+H���P	HB�H���3���H�5��������������#####	w####	#####	s#######	�########	PEQ#######	s#######	�########	�#######	s#####	s#####	\	PCOND#####	�#####	\	\	��##/00	8�
bcSum>��
Sum Basic Command4<BEGC�/Enter the {\em function} you would like to sum:		KL#,�i**3	�
summand7		C�\blankline 		EGC� Enter the {\em summation index}:		C�\tab{36}		L#
�
i�
index>		�EGC�Enter the limits of the sum:		C�\newline\tab{10}{\em From:}		L#
#�
first:		C�\tab{32}{\em To:}		�L#
�
n�BOOTTRAN�last:		[\�
bcSumGen	!	`<a<#"�#D##`\	�	0
	#D"�"�#M#\	�0
	\	�0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	��ka###	`###	4###	\	\	�##/00	8>�s<���sum(	u���<w<#"�#I#	#`#$"\		0
	#M"�"�#V#	#$"M\	0
	\	0		��1�EH���sH�e�H�U�I�L$`H�M�� A� H�E� H�E� H�\$�H��H�U�H�=���H�����H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=����H������H�+H���P	HB�L��L�M�H�\$�H��H�U�H�=����H������H�+H���P	HB�L��H�\$�H��H�U�H�=����L�E�H������H�+H���P	HB�L�E�H��H�}�L�M�H�\$�H��HH�o���H�5p���L�K�H�m���H�C�L�C�H�f���H�C�H�K�H�_���H�C�H�\����H�+H���P	HB�H�K�����u�`	�"��#	####	w#	###	s#	####	s#	####	s#	####	s#	####	\	\	�+##	/00	8�
	bcProduct>.�
Product Basic Command4<BC�BEnter the {\em function} you would like to compute the product of:		�
inputStrings��#-�i**2	�
mand7		C�\vspace{1}\newline		1�%Enter the {\em index of the product}:	�#��>		C�1\vspace{1}\newline Enter the limits of the index:		1�\newline{\em From:}	�#
�1	�7	�{\em To:}\space{2}	�#
�n	7		[\�
bcProductGen		`<a<#"�#D#
#`\	-	0
	#D"�"�#M#
\	-0
	\	-0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	�O-ka#
##	`#
##	4#
##	\	\	�U##
/00	8D>W3s<���product(	u�<w<#"�#I##`#$"\	D	0
	#M"�"�#V##$"M\	D0
	\	D0		�
�1�EH���sH�e�H�U�I�L$`H�M�� A� H�E� H�E� H�\$�H��H�U�H�=+���H�,����H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=���H������H�+H���P	HB�L��L�M�H�\$�H��H�U�H�=����H������H�+H���P	HB�L��H�\$�H��H�U�H�=����L�E�H������H�+H���P	HB�L�E�H��H�}�L�M�H�\$�H��HH����H�5����L�K�H�u���H�C�L�C�H�f���H�C�H�K�H�_���H�C�H�\����H�+H���P	HB�H�K�����u�`	�`D��#####	w####	s#####	s#####	s#####	s#####	\	\	�i##/00	8�
bcDifferentiate>l�
Differentiate Basic Command4<BEGC�3Enter the {\em function} you want to differentiate:		KL#7�sin(x*y)	�
diffand7		REGC�L\newline List the {\em variables} you want to differentiate with respect to?		KL#7�x y	�
	variables:�
quoteString		REGC�~\newline List the number of {\em times} you want to differentiate with respect to each variable (leave blank if once for each)		KL#7�1 2	�
times:w		!	`<\�
bcDifferentiateGen�
htMakeDoneButton<a<#"�#H##`\	k	0
	#H"�"�#Q#\	k0
	\	k0		��1�EH����H�e�I�L$`H�M�H�\$�H��H�_���� H�[����H�+H���P	HB�H�\$�H��H�A���H�B����H�+H���P	HB�H�\$�H��H�(���H�=)���H�*����H�+H���P	HB�H����1��u�`	��kka###	�###	`###	4###	\	\	��##/00	8�>�ps<v�
bcString2WordList<}�
bcwords2liststring<Ǡdifferentiate(	u<w<�oYou must say how many times you want to differentiate with respect to each variable---or leave that entry blank	�
bcError<#"Q#I#
#`#$"\	�	0
	#M"�"S#V#
#$"M\	�0
	\	�0		�
]1�EH���H�e�H�U�I�L$`H�M�� � H�E� H�E� H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�\$�H��H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H�v����H�+H���P	HB�H�\$�H��H�d����H�+H���P	HB�H�U�H�U�H��H�l$H�l$��%x
 H����H�U�H�\$�H��H�"����H�+H���P	HB�H��H�M�H�}� ��� H�� uYH�
����H�}�L�E�H�\$�H��(H�����H�5����L�C�H�K�H������
H�+H���P	HB�H�������u�`	H��H�\$�H��H�����H�5����H������H�+H���P	HB�H���s���H�M�A����H��H�HH�� ��H�U�H��H�l$H�l$��%x
 H��H�E�H�U�H��H�l$H�l$��%x
 H�E�H9�u.H�U�H�\$�H��H������H�+H���P	HB�H�������H�\$�H��H�����H������H�+H���P	HB�H������H�E�H�H�����H�M؍A��uH��H�H��Z�����
/��
/�����#
####	w#
###	#
######	�#
######	�#
######	PLENGTH#
#######	�#
#######	PEQL#
######	PCAR#
######	PNULL#
######	PCDR#
#######	�#
######	�#
######	�#
######	�#
#######	P<#
######	s#
#####	�#
####	s#
#####	�#
####	s#
####	\*	��\	�#
####	�#
####	�#
####	\	\	��##
/00	8�
bcDraw>��Draw Basic Command	4<�What would you like to draw?	�
bcHt<�8\newline\centerline{{\em Two Dimensional Plots}}\newline	�:\lispdownlink{A function of one variable}{(|bcDraw2Dfun|)}	�\space{2}y = f(x)\newline	�>\lispdownlink{A parametrically defined curve}{(|bcDraw2Dpar|)}	�\space{2}(x(t), y(t))\newline	�E\lispdownlink{A solution to a polynomial equation}{(|bcDraw2DSolve|)}	�\space{2} p(x,y) = 0\newline	�\vspace{1}\newline 	�=\centerline{{\em Three Dimensional Surfaces}}\newline\newline	�;\lispdownlink{A function of two variables}{(|bcDraw3Dfun|)}	�\space{2} z = f(x,y)\newline	�=\lispdownlink{A parametrically defined tube}{(|bcDraw3Dpar|)}	�#\space{2}(x(t), y(t), z(t))\newline	�B\lispdownlink{A parameterically defined surface}{(|bcDraw3Dpar1|)}	�)\space{2}(x(u,v), y(u,v), z(u,v))\newline	a<#"#H##`\	�	0
	#H"�" #Q#\	�0
	\	�0		� 1�EH����H�e�I�L$`H�M�H�\$�H��H������ H������H�+H���P	HB�H�\$�H��H�����H������H�+H���P	HB�H�\$�H��H�����H������H�+H���P	HB�H�\$�H��H�����H������H�+H���P	HB�H�\$�H��H�����H�g����H�+H���P	HB�H�\$�H��H�e���H�>����H�+H���P	HB�H�\$�H��H�D���H�����H�+H���P	HB�H�\$�H��H�#���H������H�+H���P	HB�H�\$�H��H����H������H�+H���P	HB�H�\$�H��H�����H������H�+H���P	HB�H�\$�H��H�����H�q����H�+H���P	HB�H�\$�H��H�����H�H����H�+H���P	HB�H�\$�H��H�~���H�����H�+H���P	HB�H�\$�H��H�]���H������H�+H���P	HB�H�\$�H��H�<���H������H�+H���P	HB�H�\$�H��H����H������H�+H���P	HB�H�\$�H��H�����H�{����H�+H���P	HB�H�����1��u�`	���ka###	�###	�###	�###	�###	�###
	�###	�###	�###
	�###		�###	�###	�###	�###	�###	�###	�###	4###	\$	\	��##/00	8�
bcDraw2Dfun>��4<596�
F�
Float		A	C�,\centerline{Drawing {\em y = f(x)}}\newline 	�A\centerline{where {\em y} is the dependent variable and}\newline 	�I\centerline{where {\em x} is the independent variable}\vspace{1}\newline 	�S\menuitemstyle{}\tab{2}What {\em function} f would you like to draw?\newline\tab{2}		L#7�x*cos(x)	�
function7		C�H\vspace{1}\newline\menuitemstyle{}\tab{2}Enter {\em dependent} variable:		L#��
	dependent>		C�\newline\vspace{1}\newline 		C�X\menuitemstyle{}\tab{2}Enter {\em independent} variable and {\em range}:\newline\tab{2} 		C�{\em Variable:}		L#W#>		C�ranges {\em from:}		L#	#�
from1�		C�	{\em to:}		L#	#�
to1�		C�4\indent{0}\vspace{1}\newline\menuitemstyle{}\tab{2} 	�.Optionally enter a {\em title} for your curve:		L#�y = x*cos(x)	�
title:		C�
\indent{0}		[\�
bcDraw2DfunGen	C	!	`<a<#"�#D##`\	�	0
	#D"�"�#M#\	�0
	\	�0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	�3�ka###	`###	4###	\	\	�9##/00	8'>;s<	#"�	title =="	�"	<<�draw	�
bcFinish<#"�#I##`#$"\	'	0
	#M"�"�#V##$"
\	'0
	\	'0		��1�EH���nH�e�H�U�I�L$`H�M�A� � A� H�E� H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H�o����H�+H���P	HB�H�U�H�\$�H��H�U�H�=e���H�>����H�+H���P	HB�L��H�\$�H��H�U�H�==���L�M�H�
����H�+H���P	HB�L�M�H�ʍA�u�A�,�<w
H�Q�H����H��H�\$�H�� H�����H�=����H�����H�C�L�M�H������H�+H���P	HB�L�M�L��H�U�H�}�I��H�\$�H��L�E�H������H�+H���P	HB�L�E�H��H�����H�}�L�E�H�������u�`	H�U�H�}�I��H�\$�H��H�g����H�+H���P	HB�H��H�S���H�}�H�P�����u�`	�G'��#######	>######	#######	>######	#######	PSTRING=########	PNOT######	PSTRINGP########	s#####	s#####	s#####	s#####	s#####	s#####	\	P\	PAND#######	�####	\	\	�`##/00	8�
bcDraw2Dpar>c�4<�C�=\centerline{Drawing a parametrically defined curve:}\newline 	�,\centerline{{\em ( f1(t), f2(t) )}}\newline 	�<\centerline{in terms of two functions {\em f1} and {\em f2}}	�B\centerline{and an independent variable {\em t}}\vspace{1}\newline	�5\menuitemstyle{}\tab{2}Enter the two {\em functions:}		C� \newline\tab{2}{\em Function 1:}		L#,�
-9*sin(4*t/5)	�
	function17		C� \newline\tab{2}{\em Function 2:}		L#,�8*sin(t)	�
	function27		C�d\vspace{1}\newline\menuitemstyle{}\tab{2}Enter {\em independent} variable and range:\newline\tab{2} 		L#�
t#>		L#	�-5*\%pi	�		L#	�5*\%pi	�		C�)\vspace{1}\newline\menuitemstyle{}\tab{2}		L#�	Lissajous	":		&[\�
bcDraw2DparGen	!	`<a<#"�#D##`\	b	0
	#D"�"�#M#\	b0
	\	b0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	��bka###	`###	4###	\	\	��##/00	8�>�ls<r#"�curve(	�,{}	�<;<<=><#"T#I##`#$"\	�	0
	#M"�"V#V##$"�\	�0
	\	�0		�V1�EH���H�e�H�U�I�L$`H�M�A� H�E� A� H�E� H�E� H�E� H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�u�H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�M�H�\$�H��H�U�H�=z���H�c����H�+H���P	HB�H�U�H�\$�H��H�U�H�=Q���H�2����H�+H���P	HB�H�U�H�\$�H��H�U�H�=(���H�����H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�L��H�u�H�M�H�\$�H��0H�����H�=����H�����H�C�H�K�H�����H�C�L�E�H������H�+H���P	HB�L�E�H�U�A�@�uA�@�,�<��A�@�uA�@�,�<��I��H�\$�H�� H�V���H�=o���H�p���H�C�H�U����H�+H���P	HB�H��L��H�U�H�}�H�u�H�\$�H��L�E�H�5����H�+H���P	HB�L�E�H��H����H�}�L�E�H������u�`	I�H�H���U���� �I�H�H���+���H�U�H�}�H�u�H�\$�H��H������H�+H���P	HB�H��H�����H�}�H�������u�`	�����#######	>######	#######	>######	#########!		M##########!
	Q##########!
	M########	O######	Q########	#####	s#####	s#####	s#####	s#####	s#####	s#####	\"	�\	[#########!		�#######	[#######	�####	\	\	��##/00	8�

bcDraw2DSolve>��4<�C�>\centerline{Plotting the solution to {\em p(x,y) = 0}, where} 	�I\centerline{{\em p} is a polynomial in two variables {\em x} and {\em y}}	�F\vspace{1}\newline\menuitemstyle{}\tab{2}Enter the {\em polynomial} p:	�\newline\tab{2}		L#(�y**2+7*x*y-(x**3+16*x)	7		C�C\vspace{1}\newline\menuitemstyle{}\tab{2}Enter the {\em variables}:		C�!\newline\tab{2}{\em Variable 1:} 		L#W�
independent1>		L#	#��		L#	#
�		C�!\newline\tab{2}{\em Variable 2:} 		L#��
independent2>		L#	#��
from2�		L#	#2�
to2�		 L#�":		&!	`<\�
bcDraw2DSolveGen�<a<#"�#H##`\	�	0
	#H"�"�#Q#\	�0
	\	�0		��1�EH����H�e�I�L$`H�M�H�\$�H��H�_���� H�[����H�+H���P	HB�H�\$�H��H�A���H�B����H�+H���P	HB�H�\$�H��H�(���H�=)���H�*����H�+H���P	HB�H����1��u�`	���ka###	�###	`###	4###	\	\	��##/00	8�>�s<����"�
range==[{}	��
,{}�]	<;<� = 0 	=><#"#I##`#$"\	�	0
	#M"�"#V##$"�\	�0
	\	�0		�1�EH����H�e�H�U�I�L$`H�M�A� H�E� A� A� H�E� H�E� H�E� H�E� H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H�|����H�+H���P	HB�H�U�H�\$�H��H�U�H�=b���H�K����H�+H���P	HB�H��H�u�H�\$�H��H�U�H�=6���H�����H�+H���P	HB�L��L�U�H�\$�H��H�U�H�=
���H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�L��L�M�H�\$�H��H�U�H�=����H�~����H�+H���P	HB�H��L��H�\$�H��H�U�H�=����L�m�H�G����H�+H���P	HB�L�m�L��H�u�L�U�L�M�I��H�\$�H��PH�O���H�=P���H�Q���H�C�L�S�H�J���H�C�L�K�H�3���H�C�H�K�H�4���H�C�L�E�H�-����H�+H���P	HB�L�E�H�U�A�@�uA�@�,�<��A�@�uA�@�,�<��I��H�\$�H�� H�����H�=����H�����H�C�H������H�+H���P	HB�H��L��H�U�H�\$�H��H�=����L�E�H������H�+H���P	HB�L�E�H��H�����H�u�H�M�H�M�L�E�H�u�����u�`	I�H�H���N���� �I�H�H���$���H�U�H�\$�H��H�=%���H�����H�+H���P	HB�H��H�
���H�u�H�M�H�M�H������
�u�`	�����####
###	>####
##	####
###	>####
##	####
#####!		M####
######!
	Q####
######!
	M####
####	O####
##	Q####
####	####	#	s#####	s#####	s#####	s#####	s#####	s#####	s#####	s#####	\&	\	[####
#####!		�####
###	[####
###	�####
	\	\	�##/00	8�
bcDraw3Dfun>�$Three Dimensional Draw Basic Command	4<�C�.\centerline{Drawing {\em z = f(x,y)}}\newline 	�A\centerline{where {\em z} is the dependent variable and}\newline 	�e\centerline{where {\em x, y} are the independent variables}\vspace{1}\newline\menuitemstyle{}\tab{2} 	�<What {\em function} f which you like to draw?\newline\tab{2}		L#7�exp(cos(x-y)-sin(x*y))-2	7		C�>\newline\menuitemstyle{}\tab{2}Enter {\em dependent} variable:		L#�
z	>		C��=Enter {\em independent} variables and ranges:\newline\tab{2} 		L#W�>		L#	#��		L#	#�		C�\newline\tab{2}{\em Variable:}		L#��>		L#	#���		L#	#��		C�0Optionally enter a {\em title} for your surface:		�&[\�
bcDraw3DfunGen	!	`<a<#"�#D##`\		0
	#D"�"�#M#\	0
	\	0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	�Hka###	`###	4###	\	\	�N##/00	8=>Ps<	����"��	SB-KERNEL�PSTRING=*<;<<<=><#"i#I##`#$"\	=	0
	#M"�"k#V##$"�\	=0
	\	=0		�k1�EH���$H�e�H�U�I�L$`H�M�H�E� A� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�\$�H��H�U�H�=j���H�S����H�+H���P	HB�H�U�H�\$�H��H�U�H�=A���H�"����H�+H���P	HB�H�U�H�\$�H��H�U�H�=���H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H�^����H�+H���P	HB�H�U�H�\$�H��H�U�H�=t���H�-����H�+H���P	HB�L��I��H�\$�H��0H�=M���1�H�C� H�C�H�C� L�E�H�0����H�+H���P	L�E�H�� �4I��H�\$�H��0H�=����1�H�C� H�C�H�C� L�E�H������H�+H���P	L�E�H�� ��I��H�\$�H�� H�����H�=����H�����H�C�H������H�+H���P	HB�H��H�M�H�U�H�}�H�u�H�\$�H��H������H�+H���P	HB�L��L�E�H�U�H�}�H�u�H�\$�H��H�L����H�+H���P	HB�L�E�H��H�4���H�}�I��H�M�H�*����
�u�`	� �d���H�U�H�}�H�u�H�\$�H��H������H�+H���P	HB�L��L�E�H�U�H�}�H�u�H�\$�H��H������H�+H���P	HB�L�E�H��H�����H�}�I��H�M�H�������u�`	�Z=��####
###	####
###	>####
##	####
###	####
###	>####
##	####
#####!		M####
#####!		O####
##	M####
###	s####	#	s#####	s#####	s#####	s#####	s#####	s#####	s#####	s#####	\&	c\	�####
###	�####
	\	\	�t##/00	8�
bcDraw3Dpar>w�4<�C�3\centerline{Drawing a parametrically defined curve:	�'{\em ( f1(t), f2(t), f3(t) )}}\newline 	�R\centerline{in terms of three functions {\em f1}, {\em f2}, and {\em f3}}\newline 	�Z\centerline{and an independent variable {\em t}}\vspace{1}\newline\menuitemstyle{}\tab{2} 	�<Enter the three {\em functions} of the independent variable:		C�!\newline\tab{2}{\em Function f1:}		L#*�'1.3*cos(2*t)*cos(4*t) + sin(4*t)*cos(t)	l7		C�!\newline\tab{2}{\em Function f2:}		L#*�'1.3*sin(2*t)*cos(4*t) - sin(4*t)*sin(t)	r7		C�!\newline\tab{2}{\em Function f3:}		L#*�2.5*cos(4*t)	�
	function37		vyC	L#	�4*\%pi	�		<L#�knot	":		&[\�
bcDraw3DparGen	!	`<a<#"�#D##`\	v	0
	#D"�"�#M#\	v0
	\	v0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	��vka###	`###	4###	\	\	��##/00	8�>�ls<r�#"���<�"{}tubeRadius==.25,{}tubePoints==16	�Q<;<<=><#"#I##`#$"\	�	0
	#M"�"#V##$"
\	�0
	\	�0		�1�EH����H�e�H�U�I�L$`H�M�A� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�u�H�\$�H��H�U�H�=t���H�e����H�+H���P	HB�L��L�E�H�\$�H��H�U�H�=H���H�1����H�+H���P	HB�H��H�M�H�\$�H��H�U�H�=���H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H�j����H�+H���P	HB�H�U�H�u�L�E�H�M�H�\$�H��@H�p���H�=q���H�r���H�C�L�C�H�c���H�C�H�K�H�\���H�C�H�Y����H�+H���P	HB�H�U�H�
D���H�M�H�U�H�\$�H��0H�=4���1�H�C� H�C�H�C� H�����H�+H���P	H�� ��H�U�H�\$�H��0H�=����1�H�C� H�C�H�C� H������H�+H���P	H�� ��H�u�H�\$�H�� H�l���H�=����H�����H�C�H�k����H�+H���P	HB�H��L��H�U�H�}�H�u�H�\$�H��L�E�H�c����H�+H���P	HB�L�E�H��H�K���H�}�H�M�H�M�L�E�H�<����
�u�`	� �H�U�H�}�H�u�H�\$�H��H������H�+H���P	HB�H��H�����H�}�H�M�H�M�H�������u�`	�����####
###	>####
##	####
###	>####
##	####
#####!		M####
#####!		O####
##	M####
###	#####	s#####	s#####	s#####	s#####	s#####	s#####	s#####	\ 	�\	�####
###	�####
	\	\	��##/00	8�
bcDraw3Dpar1>��4<�C�?\centerline{Drawing a parametrically defined surface:}\newline 	�9\centerline{{\em ( f1(u,v), f2(u,v), f3(u,v) )}}\newline 	y�g\centerline{and two independent variables {\em u} and {\em v}}\vspace{1}\newline\menuitemstyle{}\tab{2}	�=Enter the three {\em functions} of the independent variables:		C�	C�{\em Function f1:}		L#+�u*sin(v)	l7		�C�{\em Function f2:}		L#+�v*cos(u)	r7		�C�{\em Function f3:}		L#+�u*cos(v)	�7		C�L\newline\menuitemstyle{}\tab{2}Enter independent {\em variables} and ranges:		�C�{\em Variable 1:}		L#�
u�
ind1>		L#	�-\%pi	�		L#	�\%pi	�		�C�{\em Variable 2:}		L#�
v�
ind2>		L#	�-\%pi/2	��		L#	�\%pi/2	��		C�*\indent{0}\newline\menuitemstyle{}\tab{2} 	;	L#�surface	":		&!	`<\�
bcDraw3Dpar1Gen�<a<#"�#H##`\	�	0
	#H"�"�#Q#\	�0
	\	�0		��1�EH����H�e�I�L$`H�M�H�\$�H��H�_���� H�[����H�+H���P	HB�H�\$�H��H�A���H�B����H�+H���P	HB�H�\$�H��H�(���H�=)���H�*����H�+H���P	HB�H����1��u�`	��ka###	�###	`###	4###	\	\	�##/00	8�>ls<r�����"<�surface(	��<�Q<;<=><#"�#I##`#$"\	�	0
	#M"�"�#V##$"
\	�0
	\	�0		��1�EH����H�e�H�U�I�L$`H�M�� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�E� H�\$�H��H�U�H�=i���H�j����H�+H���P	HB�H��H�u�H�\$�H��H�U�H�=E���H�6����H�+H���P	HB�L��L�E�H�\$�H��H�U�H�=���H�����H�+H���P	HB�H��H�M�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=����H�i����H�+H���P	HB�H��H�u�H�\$�H��H�U�H�=l���H�5����H�+H���P	HB�H�U�H�\$�H��H�U�H�=C���H�����H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=���H������H�+H���P	HB�H��H�u�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�U�H�}�H�u�H�\$�H��H������H�+H���P	HB�H�U�H�U�H�}�H�u�H�\$�H��H������H�+H���P	HB�H�U�H�u�L�E�H�M�H�\$�H��@H�^���H�=_���H�`���H�C�L�C�H�Q���H�C�H�K�H�J���H�C�H�G����H�+H���P	HB�H�U�H�U�H�\$�H��0H�=%���1�H�C� H�C�H�C� H�����H�+H���P	H�� ��H�U�H�\$�H��0H�=����1�H�C� H�C�H�C� H������H�+H���P	H�� uoH�u�H�\$�H�� H�i���H�=����H�����H�C�H�h����H�+H���P	HB�H��H�t���H�}�H�u�H�]�H�]�H�M�H�a����
�u�`	� ��H�@���H�}�H�u�H�M�H�M�H�1�����u�`	����>######	>######	#########!		M#########!		O######	M#######	####
#	#####	#####	s####
#	s####	#	s#####	s#####	s#####	s#####	s#####	s#####	s#####	s#####	\&	\	�#######	�####	\	\	�4##/00	8�
bcSeries>7�Series Basic Command	4<BC�Create a series by: 		C�
\beginmenu		C�\item 		�
bcLinks�\menuitemstyle{Expansion}	��
bcSeriesExpansion		C�4\tab{11}Expand a function in a series around a point		=>�\menuitemstyle{Formula}	��
bcSeriesByFormula		C�5\tab{11}Give a formula for the {\em i}'th coefficient		C�\endmenu		!
	`<a<#"�#D##`\	6	0
	#D"�"�#M#\	60
	\	60		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	�V6ka###	`###	4###	\	\	�\##/00	8@>^�Series Expansion Basic Command	4<596�
EEM�
Expression8		=A	EGC�=Enter the {\em function} you want to expand in a power series		KL#7�log(cot(x))	7		�EGC�%Enter the {\em power series variable}		C�\tab{49}		L#W�
variable>		�EGC�4Enter the {\em point} about which you want to expand		lL#��
point7		!	`<\�
bcSeriesExpansionGen�<a<#"�#I##`#`#`\	@	0
	#I"�"�#R##`#`\	@0
	\	@0		��1�EH����H�e�I�L$`H�M�H�\$�H��H�^���� H�Z����H�+H���P	HB�H�\$�H��H�@���H�A����H�+H���P	HB�H�\$�H��H�'���H�=(���H�)����H�+H���P	HB�H����1��u�`	�@$%	'	)	a###	�###	`###	4###	\	\	��##/00	8v>�s<mr�

numberOfTerms�<�
series><#"�#I##`#$"\	v	0
	#M"�"�#V##$"�\	v0
	\	v0		�	�1�EH���=H�e�H�U�I�L$`H�M�� H�E� H�E� H�\$�H��H�U�H�=1���H�2����H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=
���H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�\$�H��H�U�H�=����H�u�H������H�+H���P	HB�H�u�H�U�H�\$�H��H�=����H������H�+H���P	HB�H��H�|���H�}�H�y�����u�`	��v��#####	>####	s#####	s#####	s#####	s#####	\	\	��##/00	8F>��Power Series Basic Command	4<C�3Select the kind of power series you want to create:		;=>�\menuitemstyle{Taylor Series}	��
bcTaylorSeries�
taylor		C��\newline Series where the exponent ranges over the integers from a {\em non-negative integer} value to plus infinity by an arbitrary {\em positive integer} step size		=>�\menuitemstyle{Laurent Series}	��
bcLaurentSeries�
laurent		C��\newline Series where the exponent ranges from an arbitrary {\em integer} value to plus infinity by an arbitrary {\em positive integer} step size		=>�\menuitemstyle{Puiseux Series}	��
bcPuiseuxSeries�
puiseux		C��\newline Series where the exponent ranges from an arbitrary {\em rational value} to plus infinity by an arbitrary {\em positive rational number} step size		L!	`<a<#"�#E##`#`#`\	F	0
	#E"�"�#N##`#`\	F0
	\	F0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�r���� H�n����H�+H���P	HB�H�\$�H��H�T���H�U����H�+H���P	HB�H�D���1��u�`	��F��a###	`###	4###	\	\	��##/00	8�>��Taylor Series Basic Command	4<cGC�;Enter the formula for the general coefficient of the series		KL#7�1/factorial(i)	�
formula7		�GC�/Enter the {\em index variable} for your formula		lL#��>		EGjloEGqlL##r7		�C��For Taylor Series, the exponent of the power series variable ranges  from an {\em initial value}, an arbitrary non-negative integer, to plus infinity; the {\em step size} is any positive integer.		�EGC�7Enter the {\em initial value} of the index (an integer)		lL#�0	�
min�
I		EGC�.Enter the {\em step size} (a positive integer)		lL#>�
stepPPI		[\�
bcTaylorSeriesGen	!"	`<a<#"�#E##`#`#`\	�	0
	#E"�"�#N##`#`\	�0
	\	�0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�r���� H�n����H�+H���P	HB�H�\$�H��H�T���H�U����H�+H���P	HB�H�D���1��u�`	�����a###	`###	4###	\	\	��##/00	8�
bcSeriesByFormulaGen>��
bcNotReady<##f#H# #`#$"\	�	0
	#H"�#h#Q# #$"\	�0
	\	�0		�h1�EH��u%H�e�H��I�L$`H�M�H��H�������u�`	�����# #	\	\	�## /00	8�>�Laurent Series Basic Command	4<59b=6��
Integer		6��
PositiveInteger		A	EG�KL#7�(-1)**(n - 1)/(n + 2)	�7		C�	G�lL#�>		EGjloEGqlL##r�		RC��\newline For Laurent Series, the exponent of the power series variable ranges from an {\em initial value}, an arbitrary integer value, to plus infinity; the {\em step size} is any positive integer.		RG�lL#�-1	��		EG�l�[\�
bcLaurentSeriesGen	!"	`<a<#"�#E#!#`#`#`\	�	0
	#E"�"�#N#!#`#`\	�0
	\	�0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�r���� H�n����H�+H���P	HB�H�\$�H��H�T���H�U����H�+H���P	HB�H�D���1��u�`	�(���a#!##	`#!##	4#!##	\	\	�.##!/00	8�>0�Puiseux Series Basic Command	4<59b=�
isDOmain�
RN�
Fraction
		A	EGC�AEnter the {\em formula} for the general coefficient of the series		KL#7�&(-1)**((3*n - 4)/6)/factorial(n - 1/3)	�7		G�lEGjloEGql�C��For Puiseux Series, the exponent of the power series variable ranges from an {\em initial value}, an arbitary rational number, to plus infinity; the {\em step size} is an any positive rational number.		�EGC�:Enter the {\em initial value} of index (a rational number)		C�\tab{51}		L#�4/3	�2		EGC�6Enter the {\em step size} (a positive rational number)		AL#�2	�2		[\�
bcPuiseuxSeriesGen	!#	`<a<#"�#E#"#`#`#`\	�	0
	#E"�"�#N#"#`#`\	�0
	\	�0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�r���� H�n����H�+H���P	HB�H�\$�H��H�T���H�U����H�+H���P	HB�H�D���1��u�`	�U���a#"##	`#"##	4#"##	\	\	�[##"/00	8�>]�
bcSeriesGen<##f#H###`#$"\	�	0
	#H"�#h#Q###$"\	�0
	\	�0		�h1�EH��u%H�e�H��I�L$`H�M�H��H�������u�`	�f���]###	\	\	�j###/00	8>l]<##f#H#$#`#$"\		0
	#H"�#h#Q#$#$"\	0
	\	0		�h1�EH��u%H�e�H��I�L$`H�M�H��H�������u�`	�t��]#$#	\	\	�x##$/00	8J>z]<##f#H#%#`#$"\	J	0
	#H"�#h#Q#%#$"\	J0
	\	J0		�h1�EH��u%H�e�H��I�L$`H�M�H��H�������u�`	��J��]#%#	\	\	��##%/00	8]>��s<���mr�<Ơ +-> 	�series	><#"�#I#&#`#$"\	]	0
	#M"�"�#V#&#$"M\	]0
	\	]0		�
�1�EH���AH�e�H�U�I�L$`H�M�A� H�E� � A� H�E� H�E� H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�u�H�\$�H��H�U�H�=w���H�X����H�+H���P	HB�H�U�H�\$�H��H�U�H�=N���H�'����H�+H���P	HB�L��H�\$�H��H�U�H�=&���L�E�H������H�+H���P	HB�L�E�H��I��H�\$�H��H�=����H������H�+H���P	HB�H��H�u�H�U�H�\$�H��H�=����H������H�+H���P	HB�L��H�U�H�u�H�\$�H��H�=����L�E�H������H�+H���P	HB�L�E�H��H�����H�u�L�E�H�M�H�M�H�u����
�u�`	��]��#&###	#	>#&###		#&####	#&####	s#&####	s#&####	s#&####	s#&####	s#&####	s#&####	\	\	��##&/00	8�
bcLimit>��Limit Basic Command	4<BC�+What kind of limit do you want to compute? 		�;=>�\menuitemstyle{A real limit?}	��
bcRealLimit�
real		C�\indentrel{17}\tab{0}		C�KThe limit as the variable approaches a {\em real} value along the real axis		C�\indentrel{-17}		=�>� \menuitemstyle{A complex limit?}	��
bcComplexLimit�
complex		�C�^The limit as the variable approaches a {\em complex} value along any path in the complex plane		�L!	`<a<#"�#D#'#`\	�	0
	#D"�"�#M#'\	�0
	\	�0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�s���� H�o����H�+H���P	HB�H�\$�H��H�U���H�V����H�+H���P	HB�H�E���1��u�`	���ka#'##	`#'##	4#'##	\	\	��##'/00	8�>��Real Limit Basic Command	4<59=�A	EGC�:Enter the {\em function} you want to compute the limit of:		KL#-�
x*sin(1/x)	�
expression7		REGC�&Enter the name of the {\em variable}: 		C�\tab{41}		L#Wm>		REGC�Compute the limit at		��
location�A finite point:	C�\tab{33}		L##r�			�
finitePoint	���	���		[\�
bcRealLimitGen	!	`<a<#"�#E#(#`#`#`\	�	0
	#E"�"�#N#(#`#`\	�0
	\	�0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�r���� H�n����H�+H���P	HB�H�\$�H��H�T���H�U����H�+H���P	HB�H�D���1��u�`	�����a#(##	`#(##	4#(##	\	\	��##(/00	8�>���<��s<m���<�limit	><��4<C�Compute the limit		�
	lispLinks�$\menuitemstyle{From both directions}	��
bcRealLimitGen1�
both	�\menuitemstyle{From the right}	���
right	�\menuitemstyle{From the left}	���
left			`<�
fun�
htpSetProperty<�
varr�
loca<#"#I#)#`#$"\	�	0
	#M"�"!#V#)#$"�\	�0
	\	�0		�!1�EH����H�e�H�U�I�L$`H�M�H�E� � � H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H;������H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=j���H�[����H�+H���P	HB�H�
Z���H�5{���H�D���H9]�HD�H�\$�H��H�=<���H�=����H�+H���P	HB�H��H�)���H�}�H�&�����u�`	H�\$�H��H����� H�����H�+H���P	HB�H�U�H�\$�H��H�����H������H�+H���P	HB�L�E�L�E�H�\$�H��H�U�H�=d���H�e����H�+H���P	HB�L�E�H��H�\$�H��I��H�=����H������H�+H���P	HB�L�E�L�E�H�\$�H��H�U�H�=���H������H�+H���P	HB�L�E�H��H�\$�H��I��H�=I���H�:����H�+H���P	HB�L�E�L�E�H�\$�H��H�U�H�=���H������H�+H���P	HB�L�E�H��H�\$�H��I��H�=����H������H�+H���P	HB�H�����1��u�`	����a#)####	s#)#####	#)####	s#)#####	#)####	s#)#####	#)####	`#)####	4#)#####	#)#####	>#)####	�#)#######	s#)#####	s#)#####	O#)####	�#)#######	�#)#####	\"	"\	�#)#####	�#)##	\	\	�+##)/00	8�>-�"right"	�
htpProperty<	
�<�><�"left"	#"�#I#*#`#$"#$"�\	�	0
	#Q"�"�#Z#*#$"
#$"M\	�0
	\	�0		��1�EH���aH�e�H�U�H�}�I�L$`H�M�� � A� H�E� H�E� H�
���H9M���H�
���H�M�H�\$�H��H�U�H�=���H�����H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=����H������H�+H���P	HB�L��H�\$�H��H�U�H�=����L�E�H������H�+H���P	HB�L�E�H��I��H�\$�H��H�=����H������H�+H���P	HB�H��H�x���H�}�H�M�H�M�H�m�����u�`	H�k���H�
\���H9M� HD�������8���
key	�>#*###	#*####	.#*####	.#*####	.#*####	�#*######	�#*######	\	�#*####	\	\	�F##*/00	8�>H�Complex Limit Basic Command	4<�EG�KL#(�sin(a*x)/tan(b*x)	�7		�EG�VL#Wm>		�EG����C�$\newline\space{0}Real part:\space{3}		L##��		C�\newline Complex part:		L##��			�	�Complex infinity	��
complexInfinity		[\�
bcComplexLimitGen	!	`<a<#"�#E#+#`#`#`\	�	0
	#E"�"�#N#+#`#`\	�0
	\	�0		��1
�EH��usH�e�I�L$`H�M�H�\$�H��H�r���� H�n����H�+H���P	HB�H�\$�H��H�T���H�U����H�+H���P	HB�H�D���1��u�`	�g���a#+##	`#+##	4#+##	\	\	�m##+/00	8\>o�s<m��<����Q<>�*%i	<�� + 	ŠcomplexLimit	><�%i	�	%infinity	#"#I#,#`#$"\	\	0
	#M"�"#V#,#$"�\	\0
	\	\0		�1�EH����H�e�H�U�I�L$`H�M�� � H�E� A� H�E� H�E� H�E� H�\$�H��H�U�H�=����H������H�+H���P	HB�H��H�}�H�\$�H��H�U�H�=����H������H�+H���P	HB�H�U�H�\$�H��H�U�H�=y���H�z����H�+H���P	HB�H;i�����H�\$�H��H�U�H�=W���H�(����H�+H���P	HB�H�U�H�\$�H��H�U�H�=.���H������H�+H���P	HB�L��I��H�\$�H��0H�=���1�H�C� H�C�H�C� L�E�H������H�+H���P	L�E�H�� �I��H�\$�H��0H�=����1�H�C� H�C�H�C� L�E�H������H�+H���P	L�E�H�� ��I��H�\$�H��H�=q���H�r����H�+H���P	HB�H��H�M�H�U�H�\$�H��0H�=%���1�H�C� H�C�H�C� H�����H�+H���P	H�� ��H�U�H�\$�H��0H�=����1�H�C� H�C�H�C� H������H�+H���P	H�� ��H�U�H�u�H�\$�H��H�=����H������H�+H���P	HB�H��H�U�H�\$�H��H�=����H�j����H�+H���P	HB�H��H�n���H�}�H�k�����u�`	H�u��H�U�H�\$�H��0H�=&���1�H�C� H�C�H�C� H������H�+H���P	H�M�H�5����H�� HD��O���H�
�����k���H�
�����_���H�5�����+����|\��>#,###	#,####	#,########!		M#,########!		M#,##########!	M#,########!		#,#########!
	M#,#########!
	M#,#########!
	s#,#######	s#,#######	�#,########!		�#,######	s#,####	s#,####	\	�#,########!		�#,######	�#,#######	�#,####	\	\	��##,/00	8"Z`Z�+-�6K����
�
�TD�p� =%�*�-3�6\<SA�GJL�ROW�^4d�fk�l?qx�xV�a����&�ϋ��.�������	#"Z`Z�/t	0		��{��f��7������̿�̑�́��s��e��T��'���������̔��~��U�����̯�̞��Y��G�������̡�̏��F��2����̠�̊��_��N��!������̺����i��!?>�@