Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

build open-axiom

54437 views
#!/projects/77750c71-ec7b-4962-bf55-a49ff5065fb6/open-axiom-build/src/interp/interpsys --script
# FASL
  compiled from "/tmp/oa-WeVqSy/code.lsp"
  using SBCL version 1.2.14.debian
�X86-64N
1.2.14.debian2(:GENCGC :SB-PACKAGE-LOCKS :SB-THREAD :SB-UNICODE)�SB-IMPL�
%DEFPARAMETER�BOOT�#AlgebraicallyClosedFunctionSpace;AL##�/tmp/oa-WeVqSy/code.lsp	o	0	8�%DEFUN�!AlgebraicallyClosedFunctionSpace;>	�	devaluate<�t#1	�pairList<� AlgebraicallyClosedFunctionSpace�DATABASE�GET3<l	m	\	###-	�AlgebraicallyClosedField<
�
FunctionSpace<�domain�rootOf�$			�rootsOf�List				�Symbol				#			�zeroOf		�zerosOf		*$		-'			#	�
mkCategory<�Join<�sublisV<#"K#ITSTANDARDTMINIMAL##`#$"\	TEXTERNAL�SB-C�=TL-XEP	q	0
	#M"�"M#V9:##$"M\	@0
	\	s	0		��1�EH���H�e�H�U�I�L$`H�M�H�\$�H��H�U�H�����H�+H���P	HB�I�l$@M�\$I�KI;L$ ��I�L$I�KI1l$@t�	H�Q�H�A H�\$�H��H�����H��H������H�+H���P	HB�H�U�H�\$�H��H�����H�=����� H������H�+H���P	H�U�H�M؍A���H�E�H�HH;
z�����H�E�H���H�� ��H�T$�H��H�T���1�H�*H���P	HB�H�U�H�\$�H��H�9���H�:����H�+H���P	HB�L��L�E�H�\$�H��(H����H�=���� H����H�C�H�C� H�����
H�+H���P	HB�L�E�H��H�\$�H��H�U�I��H������H�+H���P	HB�H��H�E�H���H�\$�H��H�U�H������H�+H���P	HB�H��H�}؍G��������L��L�M�H�O�M1�L9���L�E�H�\$�H��H�U�H������H�+H���P	HB�H�}�L�M�L�E�H��H�5����I�l$@M�\$I�S I;T$ ��I�T$I�SH��H�p�H��H�@�H�X�H�@ I1l$@t�	K�T�H��H���]�H������H�Q-H��~H�A%H�HH;
u���������
	����j���Y���?����
*���
����j ���Z���e���TABSOLUTE�alloc_tramptH�alloc_trampPIPFUNCTION	PVALUESP
SIMPLE-VECTORP	&OPTIONAL		�	SB-KERNEL�QDATA-VECTOR-SET####		######	PLIST#####	PLENGTHS�Q%CHECK-BOUNDS�QDATA-VECTOR-SET-WITH-OFFSETS�Q%SVSETS�Q
%INSTANCE-SET#########!		PFUNCALL\PSETF�DATABASE-TEMPLATE	\6###########!	###########!	###########!	7##########!
	_#########!		�Q
%INSTANCE-REFeU#######	PGET#########!		i	########	PCONSg######	8#####	\.	^S^\�
dbTemplateePCOND#######	�
constructorDBi\
	\	�u##0	8
>w�assoc<<�cons5<#"�#I9:##`#$"\	<>
	@0
	#M"�"�#V9:##$"�\	
@0
	\	
E0		��1�EH���WH�e�H�U�I�L$`H�M�H������x�I�<<��aHDx���Q�)H�\$�H��H�U�H�_����H�+H���P	HB�H��H�� t�F����H�VH���]�H�\$�H��H�U�H� ����H�+H���P	HB�H��F����~����I�l$@M�\$I�KI;L$ ��I�L$I�KI1l$@t�	H�U�H�Q�H�qH������x�I�<<��aHDx���QtwH�\$�H��H��H�u�H������H�+H���P	HB�H�u�H�
`����A�I�D�x�aHD�H�P�H��������
�
/��
*�j���Y���Y����
H�alloc_tramp��
JKLN		PSYMBOL-VALUE#######	k########	x�#######	PCDR#####	�#####	w�\	######	\	��\	p###	\	\	��##0	8h
7�!AlgebraicallyClosedFunctionSpace&]PFDEFINITION^�DATABASE-LOOKUP-FUNCTION	7��8h
7
�R	]�^�DATABASE-CONSTRUCTORFORM	7��8h
7�category]�^�DATABASE-CONSTRUCTORKIND	7��8h
7
�#1	�Category	�IntegralDomain		
		]�^�DATABASE-CONSTRUCTORMODEMAP	7��8h
7	]�^�DATABASE-COSIG	7��8h
77	
	�CATEGORY�	SIGNATURE	�	�$	�'	�*	�-	�*$	�-'	!
		]�^�DATABASE-CONSTRUCTORCATEGORY	7��8h
7�algfunc.spad	]�^�DATABASE-SOURCEFILE	7��8h
7�*1��	PAND�
ofCategory�
�*2		���			���	���*3�	�isDomain��		��
�				����	���#	��		����	���#	��*4�	���
�				*��	-��	*��	-��		]�^�DATABASE-MODEMAPS	7��8h
7�~=�Boolean		#PELT		-�
Polynomial		#c�	�SparseUnivariatePolynomial		#b�	#	#a�	"��	'"��		*	#f�		#e�	#	#d�	"��	$"��		�zero?�	#�		�	variables#		"��		�
univariate�Fraction	�Kernel		"��has��	�		�
unitNormal�Record�:�unit	*�	canonical	*�	associate			#8�		�
unitCanonical#7�		�unit?#5�		�tower"		"��		�
subtractIfCan�Maybe		#�		�subst	"��	�Equation			"��		"��		�squareFreePart#\�		�
squareFree�Factored		#[�		�sqrt#o�		�	sizeLess?�#L�		�sample	#�CONST		#i�	#h�	#g�	"��	'"��		#l�	#k�	#j�	"��	$"��		�retractIfCan�Union��	�failed			"
$��Ring		�	rs			"�%�	r�		"��	r�Integer			"�$��
RetractableTo		�	r#		"��	r"		"��	r			"�POR��%	$��			�		�retracts	"y�	{	"�%�	�	"��		"���	#	"��	"	"��		"���		�rem	#H�		�
reducedSystem�Matrix�	�		"y�	)*�mat�	*�vec�Vector�			�		"y�	)*���		*���				"���andy$��LinearlyExplicitRingOver�			��y		�	�	"���		�reciprt		#+�		�quo#I�		�principalIdeal)*�coef	*�	generator			#C�		�prime?#Z�		�patternMatch�PatternMatchResult�Float		�Pattern	�	"�$��PatternMatchable		�	��	��	�	"�$���		�		�paren	"��	"��		�	opposite?�#�		�	operators�
BasicOperator			"��		�operator	"��		�one?#-�		�odd?"�$�	�		�	numerator"�y�		�numer�SparseMultivariatePolynomial�		"�y�		�nthRoot�	#n�		�multiEuclideanrt		#E�		�minPoly"	"�$x	�		�map�Mapping	"	"��		�
mainKernel�"��		�leftReducedSystem�	"y�	�	"y�	�	"���	�	"���		�lcm�#=�	�#<�		�latex�String		#�		�kernels"��		�kernel	"��		"��		�isTimes	"�$��	SemiGroup		�		�isPowerr)*�val	*�exponent�		t		"�y�		�isPlus"�$��AbelianSemiGroup		�		�isMultr)*��	*�var		t		"�a�		�isExptr)	t	#	"�y�		"�y�		"�Q�		�is?�#	"��	�	"��		�inv#Y�		�height�NonNegativeInteger		"��		�hash�
SingleInteger		#�		�ground?"��		�ground�"��		�
gcdPolynomial	#;�		�gcd�#?�	�#>�		�freeOf?"��	�"��		�factor#]�		�extendedEuclidean)*�coef1	*�coef2	�		#G�	r)	t		#F�		�exquo�	#9�		�expressIdealMemberA		#B�		�even?"��		�eval#�)	"�y�	#�(		"�y�	�			"�y�	)		"�y�	#	"�$��
ConvertibleTo�	InputForm			�	#	"���	"���		"���	$"���		"��	�	"��	�	"��	�	"��	#	"��	#�	"��	�	"��	�	"��		"��		"��	N"��	L"��	G"��	"	"��	!	�
euclideanSize�#K�		�elt"��		"��		"��		"��	"��		�divide)*�quotient	*�	remainder			#J�		�
distribute�"��	"��		�
differentiate�	"y�	#�	"y�	�"y�	$"y�		�denominator"�%�		�denom"�%�		�definingPolynomial"��		�convert	"��	V	"�%�	�	"�$���		�	�	"�$���		�		�	conjugate�"$��Group		�		�
commutator�"*�		�coerce�
OutputForm		#
�	�	#*�	#:�	�	#U�	s	"y�	{	"�%�	��				"�%�	?	"�%�	>	"�%�		"�y�	�	"��	#	"��	"	"��	!	�
charthRootB	"�$��CharacteristicNonZero		�		�characteristic�	#)b		�box"��	"��		�belong?�	"��		�before?#�		�associates?�#6�		�
applyQuote#	"��	#	"��	#	"��	#	"��	#	"��		�annihilate?�#"�		�Zero#b		�Onea#.b		�D	"y�	"
y�	�"	y�	$"y�		P=#�		P/�#T�		"�%�		P-#�	�#�		P+�#�		P**�PositiveInteger		#$�	�	#,�	#X�	�	#m�		P*�	#�	�	#�	�	#�	�##�	�#W�	�	#V�	�	"�$��CommutativeRing		�	�	"�y�	!		!_	��ɮ��ɧ�ȅa�y��d�`��\��"����$�J��������H��)��������)����������������
ȸ�ȩ�ȩWȟxț�zo�to�rX�ng�n"�gN�b�J�H=�E1��73��5��3��1"�������������������������ȼ��ɧ�ȧ��ɥ��ɣ��ɡ�ȡ��ɟ��ɝ�ȕv�ɒu�ɑ�Ȑv�Ɏu�ɍv�ɋu�Ɋ�ȇv�Ʌu�Ʉv�ɀu��v��}u��|�m�l�k�g�f�eJ�N<�G����]�^�DATABASE-OPERATIONALIST	7��8h
7�commutative�*			�noZeroDivisors	�canonicalUnitNormal		]�^�DATABASE-ATTRIBUTES	7��8h
7�ACFS]�^�DATABASE-ABBREVIATION	7��8h
7�	�			]�^�DATABASE-PARENTS	7��8h
7�AbelianGroup		�
AbelianMonoid		`	�Algebra�	$��	��		�		��	BasicType		�BiModule��	$�	���		�		�CancellationAbelianMonoid		S$�S	�CharacteristicZero	$�	�
CoercibleFrom{	$��	�s	$�x	��		�#		�"		��		�		��		�CoercibleTo2		�	�$��	$�	#$�#	�DivisionRing		�
EntireRing		�EuclideanDomain		�Evalable		�ExpressionSpace		�Field		�FullyLinearlyExplicitRingOver�	$�	�FullyPatternMatchable�		�FullyRetractableTo�		�		�	GcdDomain		)$�)	�
InnerEvalable		("		�	�
LeftLinearSet�	$�x	.�		.		.�		�
LeftModule�	��y	7�	$�x	7�		7		�	LinearSet�	$�	@�		@		���y	��	$�	�Module�	$�	J�		J		�Monoid		�PartialDifferentialDomain#	$�	�PartialDifferentialRing#	$�	�PartialDifferentialSpace#	$�	�$��	�$��	�Patternable�		�PrincipalIdealDomain		�RadicalCategory		�{	$�	�s	$�	����%�		�$��	��		�#		�"		�RightLinearSet�	$��	u�		u		�RightModule�	$�	|�		|		x	�Rng		P	�SemiRing		�SetCategory		�Type		�UniqueFactorizationDomain		!W	���~���k���i���\���Y���V���L���I���B����������]�^�DATABASE-ANCESTORS	7��8"cZ�+�9�[
�
s��7��EO�OWP�P	#"cZ�t	0		�̀��G?>�@