Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

build open-axiom

54474 views
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

-- SPAD files for the functional world should be compiled in the
-- following order:
--
--   op  kl  function  funcpkgs  manip  algfunc
--   elemntry  constant  funceval  COMBFUNC  fe

)abbrev category COMBOPC CombinatorialOpsCategory
++ Category for summations and products
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 22 February 1993 (JHD/BMT)
++ Description:
++   CombinatorialOpsCategory is the category obtaining by adjoining
++   summations and products to the usual combinatorial operations;
CombinatorialOpsCategory(): Category ==
  CombinatorialFunctionCategory with
    factorials : $ -> $
      ++ factorials(f) rewrites the permutations and binomials in f
      ++ in terms of factorials;
    factorials : ($, Symbol) -> $
      ++ factorials(f, x) rewrites the permutations and binomials in f
      ++ involving x in terms of factorials;
    summation  : ($, Symbol)            -> $
      ++ summation(f(n), n) returns the formal sum S(n) which verifies
      ++ S(n+1) - S(n) = f(n);
    summation  : ($, SegmentBinding $)  -> $
      ++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
      ++ formal sum;
    product    : ($, Symbol)            -> $
      ++ product(f(n), n) returns the formal product P(n) which verifies
      ++ P(n+1)/P(n) = f(n);
    product    : ($, SegmentBinding  $) -> $
      ++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
      ++ formal product;

)abbrev package COMBF CombinatorialFunction
++ Provides the usual combinatorial functions
++ Author: Manuel Bronstein, Martin Rubey
++ Date Created: 2 Aug 1988
++ Date Last Updated: 30 October 2005
++ Description:
++   Provides combinatorial functions over an integral domain.
++ Keywords: combinatorial, function, factorial.
++ Examples:  )r COMBF INPUT



CombinatorialFunction(R, F): Exports == Implementation where
  R: IntegralDomain
  F: FunctionSpace R

  OP  ==> BasicOperator
  K   ==> Kernel F
  SE  ==> Symbol
  O   ==> OutputForm
  SMP ==> SparseMultivariatePolynomial(R, K)
  Z   ==> Integer

  POWER        ==> '%power
  OPEXP        ==> 'exp
  SPECIALDIFF  ==> "%specialDiff"
  SPECIALDISP  ==> "%specialDisp"
  SPECIALEQUAL ==> "%specialEqual"

  Exports ==> with
    belong?    : OP -> Boolean
      ++ belong?(op) is true if op is a combinatorial operator;
    operator   : OP -> OP
      ++ operator(op) returns a copy of op with the domain-dependent
      ++ properties appropriate for F;
      ++ error if op is not a combinatorial operator;
    **       : (F, F) -> F
      ++ a ** b is the formal exponential a**b;
    binomial   : (F, F) -> F
      ++ binomial(n, r) returns the number of subsets of r objects
      ++ taken among n objects, i.e. n!/(r! * (n-r)!);
    permutation: (F, F) -> F
      ++ permutation(n, r) returns the number of permutations of
      ++ n objects taken r at a time, i.e. n!/(n-r)!;
    factorial  : F -> F
      ++ factorial(n) returns the factorial of n, i.e. n!;
    factorials : F -> F
      ++ factorials(f) rewrites the permutations and binomials in f
      ++ in terms of factorials;
    factorials : (F, SE) -> F
      ++ factorials(f, x) rewrites the permutations and binomials in f
      ++ involving x in terms of factorials;
    summation  : (F, SE) -> F
      ++ summation(f(n), n) returns the formal sum S(n) which verifies
      ++ S(n+1) - S(n) = f(n);
    summation  : (F, SegmentBinding F)  -> F
      ++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
      ++ formal sum;
    product    : (F, SE) -> F
      ++ product(f(n), n) returns the formal product P(n) which verifies
      ++ P(n+1)/P(n) = f(n);
    product    : (F, SegmentBinding  F) -> F
      ++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
      ++ formal product;
    iifact     : F -> F
      ++ iifact(x) should be local but conditional;
    iibinom    : List F -> F
      ++ iibinom(l) should be local but conditional;
    iiperm     : List F -> F
      ++ iiperm(l) should be local but conditional;
    iipow      : List F -> F
      ++ iipow(l) should be local but conditional;
    iidsum     : List F -> F
      ++ iidsum(l) should be local but conditional;
    iidprod    : List F -> F
      ++ iidprod(l) should be local but conditional;
    ipow       : List F -> F
      ++ ipow(l) should be local but conditional;

  Implementation ==> add
    ifact     : F -> F
    iiipow    : List F -> F
    iperm     : List F -> F
    ibinom    : List F -> F
    isum      : List F -> F
    idsum     : List F -> F
    iprod     : List F -> F
    idprod    : List F -> F
    dsum      : List F -> O
    ddsum     : List F -> O
    dprod     : List F -> O
    ddprod    : List F -> O
    equalsumprod  : (K, K) -> Boolean 
    equaldsumprod : (K, K) -> Boolean 
    fourth    : List F -> F
    dvpow1    : List F -> F
    dvpow2    : List F -> F
    summand   : List F -> F
    dvsum     : (List F, SE) -> F
    dvdsum    : (List F, SE) -> F
    dvprod    : (List F, SE) -> F
    dvdprod   : (List F, SE) -> F
    facts     : (F, List SE) -> F
    K2fact    : (K, List SE) -> F
    smpfact   : (SMP, List SE) -> F

    dummy == new()$SE :: F
    opfact  := operator('factorial)$CommonOperators
    opperm  := operator('permutation)$CommonOperators
    opbinom := operator('binomial)$CommonOperators
    opsum   := operator('summation)$CommonOperators
    opdsum  := operator('%defsum)$CommonOperators
    opprod  := operator('product)$CommonOperators
    opdprod := operator('%defprod)$CommonOperators
    oppow   := operator(POWER)$CommonOperators

    factorial x          == opfact x
    binomial(x, y)       == opbinom [x, y]
    permutation(x, y)    == opperm [x, y]

    import F
    import Kernel F

    number?(x:F):Boolean ==
      if R has RetractableTo(Z) then
        ground?(x) or
         ((retractIfCan(x)@Union(Fraction(Z),"failed")) case Fraction(Z))
      else
        ground?(x)

    x ** y               == 
      -- Do some basic simplifications
      is?(x,POWER) =>
        args : List F := argument first kernels x
        not(#args = 2) => error "Too many arguments to **"
        number?(first args) and number?(y) =>
          oppow [first(args)**y, second args]
        oppow [first args, (second args)* y]
      -- Generic case
      exp : Union(Record(val:F,exponent:Z),"failed") := isPower x
      exp case Record(val:F,exponent:Z) =>
        expr := exp::Record(val:F,exponent:Z)
        oppow [expr.val, (expr.exponent)*y]
      oppow [x, y]

    belong? op           == has?(op, 'comb)
    fourth l             == third rest l
    dvpow1 l             == second(l) * first(l) ** (second l - 1)
    factorials x         == facts(x, variables x)
    factorials(x, v)     == facts(x, [v])
    facts(x, l)          == smpfact(numer x, l) / smpfact(denom x, l)
    summand l            == eval(first l, retract(second l)@K, third l)

    product(x:F, i:SE) ==
      dm := dummy
      opprod [eval(x, k := kernel(i)$K, dm), dm, k::F]

    summation(x:F, i:SE) ==
      dm := dummy
      opsum [eval(x, k := kernel(i)$K, dm), dm, k::F]

    dvsum(l, x) ==
      opsum [differentiate(first l, x), second l, third l]

    dvdsum(l, x) ==
      x = retract(y := third l)@SE => 0
      if member?(x, variables(h := third rest rest l)) or 
         member?(x, variables(g := third rest l)) then
        error "a sum cannot be differentiated with respect to a bound"
      else
        opdsum [differentiate(first l, x), second l, y, g, h]

    dvprod(l, x) ==
      dm := retract(dummy)@SE
      f := eval(first l, retract(second l)@K, dm::F)
      p := product(f, dm)

      opsum [differentiate(first l, x)/first l * p, second l, third l]


    dvdprod(l, x) ==
      x = retract(y := third l)@SE => 0
      if member?(x, variables(h := third rest rest l)) or 
         member?(x, variables(g := third rest l)) then
        error "a product cannot be differentiated with respect to a bound"
      else
        opdsum cons(differentiate(first l, x)/first l, rest l) * opdprod l 

    dprod l ==
      prod(summand(l)::O, third(l)::O)

    ddprod l ==
      prod(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)

    dsum l ==
      sum(summand(l)::O, third(l)::O)

    ddsum l ==
      sum(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)

    equalsumprod(s1, s2) ==
      l1 := argument s1
      l2 := argument s2

      (eval(first l1, retract(second l1)@K, second l2) = first l2)

    equaldsumprod(s1, s2) ==
      l1 := argument s1
      l2 := argument s2

      ((third rest l1 = third rest l2) and
       (third rest rest l1 = third rest rest l2) and
       (eval(first l1, retract(second l1)@K, second l2) = first l2))

    product(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)$K
      dm := dummy
      opdprod [eval(x,k,dm), dm, k::F, lo segment s, hi segment s]

    summation(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)$K
      dm := dummy
      opdsum [eval(x,k,dm), dm, k::F, lo segment s, hi segment s]

    smpfact(p, l) ==
      map(K2fact(#1, l), #1::F, p)$PolynomialCategoryLifting(
        IndexedExponents K, K, R, SMP, F)

    K2fact(k, l) ==
      kf : F
      empty? [v for v in variables(kf := k::F) | member?(v, l)] => kf
      empty?(args:List F := [facts(a, l) for a in argument k]) => kf
      is?(k, opperm) =>
        factorial(n := first args) / factorial(n - second args)
      is?(k, opbinom) =>
        n := first args
        p := second args
        factorial(n) / (factorial(p) * factorial(n-p))
      (operator k) args

    operator op ==
      is?(op,'factorial)   => opfact
      is?(op,'permutation) => opperm
      is?(op,'binomial)    => opbinom
      is?(op,'summation)   => opsum
      is?(op,'%defsum)     => opdsum
      is?(op,'product)     => opprod
      is?(op,'%defprod)    => opdprod
      is?(op, POWER)                 => oppow
      error "Not a combinatorial operator"

    iprod l ==
      zero? first l => 0
      one? first l => 1
      kernel(opprod, l)

    isum l ==
      zero? first l => 0
      kernel(opsum, l)

    idprod l ==
      member?(retract(second l)@SE, variables first l) =>
        kernel(opdprod, l)
      first(l) ** (fourth rest l - fourth l + 1)

    idsum l ==
      member?(retract(second l)@SE, variables first l) =>
        kernel(opdsum, l)
      first(l) * (fourth rest l - fourth l + 1)

    ifact x ==
      zero? x or one? x => 1
      kernel(opfact, x)

    ibinom l ==
      n := first l
      ((p := second l) = 0) or (p = n) => 1
      one? p or (p = n - 1) => n
      kernel(opbinom, l)

    iperm l ==
      zero? second l => 1
      kernel(opperm, l)

    if R has RetractableTo Z then
      iidsum l ==
        (r1:=retractIfCan(fourth l)@Union(Z,"failed"))
         case "failed" or
          (r2:=retractIfCan(fourth rest l)@Union(Z,"failed"))
            case "failed" or
             (k:=retractIfCan(second l)@Union(K,"failed")) case "failed"
               => idsum l
        +/[eval(first l,k::K,i::F) for i in r1::Z .. r2::Z]

      iidprod l ==
        (r1:=retractIfCan(fourth l)@Union(Z,"failed"))
         case "failed" or
          (r2:=retractIfCan(fourth rest l)@Union(Z,"failed"))
            case "failed" or
             (k:=retractIfCan(second l)@Union(K,"failed")) case "failed"
               => idprod l
        */[eval(first l,k::K,i::F) for i in r1::Z .. r2::Z]

      iiipow l ==
          (u := isExpt(x := first l, OPEXP)) case "failed" => kernel(oppow, l)
          rec := u::Record(var: K, exponent: Z)
          y := first argument(rec.var)
          (r := retractIfCan(y)@Union(Fraction Z, "failed")) case
              "failed" => kernel(oppow, l)
          (operator(rec.var)) (rec.exponent * y * second l)

      if F has RadicalCategory then
        ipow l ==
          (r := retractIfCan(second l)@Union(Fraction Z,"failed"))
            case "failed" => iiipow l
          first(l) ** (r::Fraction(Z))
      else
        ipow l ==
          (r := retractIfCan(second l)@Union(Z, "failed"))
            case "failed" => iiipow l
          first(l) ** (r::Z)

    else
      ipow l ==
        zero?(x := first l) =>
          zero? second l => error "0 ** 0"
          0
        one? x or zero?(n := second l) => 1
        one? n => x
        (u := isExpt(x, OPEXP)) case "failed" => kernel(oppow, l)
        rec := u::Record(var: K, exponent: Z)
        one?(y := first argument(rec.var)) or y = -1 =>
            (operator(rec.var)) (rec.exponent * y * n)
        kernel(oppow, l)

    if R has CombinatorialFunctionCategory then
      iifact x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => ifact x
        factorial(r::R)::F

      iiperm l ==
        (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
          (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
            => iperm l
        permutation(r1::R, r2::R)::F

      if R has RetractableTo(Z) and F has Algebra(Fraction(Z)) then
         iibinom l ==
           (s:=retractIfCan(first l-second l)@Union(R,"failed")) case R and
             (t:=retractIfCan(s)@Union(Z,"failed")) case Z and positive? t =>
              ans:=1::F
              for i in 1..t repeat
                  ans:=ans*(second l+i::R::F)
              (1/factorial t) * ans
           (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
             (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
               => ibinom l
           binomial(r1::R, r2::R)::F

      else
         iibinom l ==
           (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
             (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
               => ibinom l
           binomial(r1::R, r2::R)::F

    else
      iifact x  == ifact x
      iibinom l == ibinom l
      iiperm l  == iperm l

    if R has ElementaryFunctionCategory then
      iipow l ==
        (r1:=retractIfCan(first l)@Union(R,"failed")) case "failed" or
          (r2:=retractIfCan(second l)@Union(R,"failed")) case "failed"
            => ipow l
        (r1::R ** r2::R)::F
    else
      iipow l == ipow l

    if F has ElementaryFunctionCategory then
      dvpow2 l == if zero?(first l) then
                    0
                  else
                    log(first l) * first(l) ** second(l)

    evaluate(opfact, iifact)$BasicOperatorFunctions1(F)
    evaluate(oppow, iipow)
    evaluate(opperm, iiperm)
    evaluate(opbinom, iibinom)
    evaluate(opsum, isum)
    evaluate(opdsum, iidsum)
    evaluate(opprod, iprod)
    evaluate(opdprod, iidprod)
    derivative(oppow, [dvpow1, dvpow2])
    setProperty(opsum,   SPECIALDIFF, dvsum@((List F, SE) -> F) pretend None)
    setProperty(opdsum,  SPECIALDIFF, dvdsum@((List F, SE)->F) pretend None)
    setProperty(opprod,  SPECIALDIFF, dvprod@((List F, SE)->F) pretend None)
    setProperty(opdprod, SPECIALDIFF, dvdprod@((List F, SE)->F) pretend None)
    setProperty(opsum,   SPECIALDISP, dsum@(List F -> O) pretend None)
    setProperty(opdsum,  SPECIALDISP, ddsum@(List F -> O) pretend None)
    setProperty(opprod,  SPECIALDISP, dprod@(List F -> O) pretend None)
    setProperty(opdprod, SPECIALDISP, ddprod@(List F -> O) pretend None)
    setProperty(opsum,   SPECIALEQUAL, equalsumprod@((K,K) -> Boolean) pretend None)
    setProperty(opdsum,  SPECIALEQUAL, equaldsumprod@((K,K) -> Boolean) pretend None)
    setProperty(opprod,  SPECIALEQUAL, equalsumprod@((K,K) -> Boolean) pretend None)
    setProperty(opdprod, SPECIALEQUAL, equaldsumprod@((K,K) -> Boolean) pretend None)

)abbrev package FSPECF FunctionalSpecialFunction
++ Provides the special functions
++ Author: Manuel Bronstein
++ Date Created: 18 Apr 1989
++ Date Last Updated: 4 October 1993
++ Description: Provides some special functions over an integral domain.
++ Keywords: special, function.
FunctionalSpecialFunction(R, F): Exports == Implementation where
  R: IntegralDomain
  F: FunctionSpace R

  OP  ==> BasicOperator
  K   ==> Kernel F
  SE  ==> Symbol

  Exports ==> with
    belong? : OP -> Boolean
      ++ belong?(op) is true if op is a special function operator;
    operator: OP -> OP
      ++ operator(op) returns a copy of op with the domain-dependent
      ++ properties appropriate for F;
      ++ error if op is not a special function operator
    abs     : F -> F
      ++ abs(f) returns the absolute value operator applied to f
    Gamma   : F -> F
      ++ Gamma(f) returns the formal Gamma function applied to f
    Gamma   : (F,F) -> F
      ++ Gamma(a,x) returns the incomplete Gamma function applied to a and x
    Beta:      (F,F) -> F
      ++ Beta(x,y) returns the beta function applied to x and y
    digamma:   F->F
      ++ digamma(x) returns the digamma function applied to x 
    polygamma: (F,F) ->F
      ++ polygamma(x,y) returns the polygamma function applied to x and y
    besselJ:   (F,F) -> F
      ++ besselJ(x,y) returns the besselj function applied to x and y
    besselY:   (F,F) -> F
      ++ besselY(x,y) returns the bessely function applied to x and y
    besselI:   (F,F) -> F
      ++ besselI(x,y) returns the besseli function applied to x and y
    besselK:   (F,F) -> F
      ++ besselK(x,y) returns the besselk function applied to x and y
    airyAi:    F -> F
      ++ airyAi(x) returns the airyai function applied to x 
    airyBi:    F -> F
      ++ airyBi(x) returns the airybi function applied to x

    iiGamma : F -> F
      ++ iiGamma(x) should be local but conditional;
    iiabs     : F -> F
      ++ iiabs(x) should be local but conditional;

  Implementation ==> add
    iabs     : F -> F
    iGamma:     F -> F

    opabs       := operator('abs)$CommonOperators
    opGamma     := operator('Gamma)$CommonOperators
    opGamma2    := operator('Gamma2)$CommonOperators
    opBeta      := operator('Beta)$CommonOperators
    opdigamma   := operator('digamma)$CommonOperators
    oppolygamma := operator('polygamma)$CommonOperators
    opBesselJ   := operator('besselJ)$CommonOperators
    opBesselY   := operator('besselY)$CommonOperators
    opBesselI   := operator('besselI)$CommonOperators
    opBesselK   := operator('besselK)$CommonOperators
    opAiryAi    := operator('airyAi)$CommonOperators
    opAiryBi    := operator('airyBi)$CommonOperators

    abs x         == opabs x
    Gamma(x)      == opGamma(x)
    Gamma(a,x)    == opGamma2(a,x)
    Beta(x,y)     == opBeta(x,y)
    digamma x     == opdigamma(x)
    polygamma(k,x)== oppolygamma(k,x)
    besselJ(a,x)  == opBesselJ(a,x)
    besselY(a,x)  == opBesselY(a,x)
    besselI(a,x)  == opBesselI(a,x)
    besselK(a,x)  == opBesselK(a,x)
    airyAi(x)     == opAiryAi(x)
    airyBi(x)     == opAiryBi(x)

    belong? op == has?(op, 'special)

    operator op ==
      is?(op,'abs)      => opabs
      is?(op,'Gamma)    => opGamma
      is?(op,'Gamma2)   => opGamma2
      is?(op,'Beta)     => opBeta
      is?(op,'digamma)  => opdigamma
      is?(op,'polygamma)=> oppolygamma
      is?(op,'besselJ)  => opBesselJ
      is?(op,'besselY)  => opBesselY
      is?(op,'besselI)  => opBesselI
      is?(op,'besselK)  => opBesselK
      is?(op,'airyAi)   => opAiryAi
      is?(op,'airyBi)   => opAiryBi

      error "Not a special operator"

    -- Could put more unconditional special rules for other functions here
    iGamma x ==
      one? x => x
      kernel(opGamma, x)

    iabs x ==
      zero? x => 0
      is?(x, opabs) => x
      before?(x,0) => kernel(opabs, -x)
      kernel(opabs, x)

    -- Could put more conditional special rules for other functions here

    if R has abs : R -> R then
      iiabs x ==
        (r := retractIfCan(x)@Union(Fraction Polynomial R, "failed"))
          case "failed" => iabs x
        f := r::Fraction Polynomial R
        (a := retractIfCan(numer f)@Union(R, "failed")) case "failed" or
          (b := retractIfCan(denom f)@Union(R,"failed")) case "failed" => iabs x
        abs(a::R)::F / abs(b::R)::F

    else iiabs x == iabs x

    if R has SpecialFunctionCategory then
      iiGamma x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iGamma x
        Gamma(r::R)::F

    else
      if R has RetractableTo Integer then
        iiGamma x ==
          (r := retractIfCan(x)@Union(Integer, "failed")) case Integer
            and (r::Integer >= 1) => factorial(r::Integer - 1)::F
          iGamma x
      else
        iiGamma x == iGamma x

    -- Default behaviour is to build a kernel
    evaluate(opGamma, iiGamma)$BasicOperatorFunctions1(F)
    evaluate(opabs, iiabs)$BasicOperatorFunctions1(F)

    import Fraction Integer
    ahalf:  F    := recip(2::F)::F
    athird: F    := recip(2::F)::F
    twothirds: F := 2*recip(3::F)::F

    lzero(l: List F): F == 0

    iBesselJGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselJ (n-1,x) - besselJ (n+1,x))
    iBesselYGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselY (n-1,x) - besselY (n+1,x))
    iBesselIGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselI (n-1,x) + besselI (n+1,x))
    iBesselKGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (-besselK (n-1,x) - besselK (n+1,x))
    ipolygammaGrad(l: List F): F ==
        n := first l; x := second l
        polygamma(n+1, x)
    iBetaGrad1(l: List F): F ==
        x := first l; y := second l
        Beta(x,y)*(digamma x - digamma(x+y))
    iBetaGrad2(l: List F): F ==
        x := first l; y := second l
        Beta(x,y)*(digamma y - digamma(x+y))

    if F has ElementaryFunctionCategory then
      iGamma2Grad(l: List F):F ==
        a := first l; x := second l
        - x ** (a - 1) * exp(-x)
      derivative(opGamma2, [lzero, iGamma2Grad])

    derivative(opabs,       abs(#1) * inv(#1))
    derivative(opGamma,     digamma #1 * Gamma #1)
    derivative(opBeta,      [iBetaGrad1, iBetaGrad2])
    derivative(opdigamma,   polygamma(1, #1))
    derivative(oppolygamma, [lzero, ipolygammaGrad])
    derivative(opBesselJ,   [lzero, iBesselJGrad])
    derivative(opBesselY,   [lzero, iBesselYGrad])
    derivative(opBesselI,   [lzero, iBesselIGrad])
    derivative(opBesselK,   [lzero, iBesselKGrad])

)abbrev package SUMFS FunctionSpaceSum
++ Top-level sum function
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 19 April 1991
++ Description: computes sums of top-level expressions;
FunctionSpaceSum(R, F): Exports == Implementation where
  R: Join(IntegralDomain,
          RetractableTo Integer, LinearlyExplicitRingOver Integer)
  F: Join(FunctionSpace R, CombinatorialOpsCategory,
          AlgebraicallyClosedField, TranscendentalFunctionCategory)

  SE  ==> Symbol
  K   ==> Kernel F

  Exports ==> with
    sum: (F, SE) -> F
      ++ sum(a(n), n) returns A(n) such that A(n+1) - A(n) = a(n);
    sum: (F, SegmentBinding F) -> F
      ++ sum(f(n), n = a..b) returns f(a) + f(a+1) + ... + f(b);

  Implementation ==> add
    import ElementaryFunctionStructurePackage(R, F)
    import GosperSummationMethod(IndexedExponents K, K, R,
                                 SparseMultivariatePolynomial(R, K), F)

    innersum: (F, K) -> Union(F, "failed")
    notRF?  : (F, K) -> Boolean
    newk    : () -> K

    newk() == kernel(new()$SE)

    sum(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)@K
      (u := innersum(x, k)) case "failed" => summation(x, s)
      eval(u::F, k, 1 + hi segment s) - eval(u::F, k, lo segment s)

    sum(x:F, v:SE) ==
      (u := innersum(x, kernel(v)@K)) case "failed" => summation(x,v)
      u::F

    notRF?(f, k) ==
      for kk in tower f repeat
        member?(k, tower(kk::F)) and (symbolIfCan(kk) case "failed") =>
          return true
      false

    innersum(x, k) ==
      zero? x => 0
      notRF?(f := normalize(x / (x1 := eval(x, k, k::F - 1))), k) =>
        "failed"
      (u := GospersMethod(f, k, newk)) case "failed" => "failed"
      x1 * eval(u::F, k, k::F - 1)