<exercise checkit-seed="0003" checkit-slug="A1" checkit-title="Linear maps">
<statement>
<p>Consider the following maps of polynomials <m>S:\mathcal{P}\rightarrow\mathcal{P}</m> and <m>T:\mathcal{P}\rightarrow\mathcal{P}</m> defined by
<me>
S(g(x))=
x^{3} g\left(x\right) + 2 \, g\left(x\right)^{3}
\hspace{1em} \text{and} \hspace{1em} T(g(x))=
-3 \, g\left(x^{3}\right) + 2 \, g'\left(-2\right) </me>
Explain why one these maps is a linear transformation and why the other map is not.
</p>
</statement>
<answer>
<p><m>S</m> is not linear and <m>T</m> is linear.</p>
</answer>
</exercise>