Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
<exercise checkit-seed="0010" checkit-slug="A4" checkit-title="Injectivity and surjectivity">
2
<statement>
3
Let <m>T:\mathbb{R}^ 4 \to \mathbb{R}^ 4 </m> be the linear transformation given by the standard matrix
4
<m> \left[\begin{array}{cccc}
5
1 &amp; 2 &amp; -1 &amp; 3 \\
6
0 &amp; 1 &amp; -2 &amp; 7 \\
7
0 &amp; 0 &amp; 1 &amp; -3 \\
8
0 &amp; 1 &amp; 0 &amp; 1
9
\end{array}\right] .</m><ol><li>Explain why <m>T</m> is or is not injective.</li><li>Explain why <m>T</m> is or is not surjective.</li></ol></statement>
10
<answer>
11
<p>
12
<me>\operatorname{RREF} \left[\begin{array}{cccc}
13
1 &amp; 2 &amp; -1 &amp; 3 \\
14
0 &amp; 1 &amp; -2 &amp; 7 \\
15
0 &amp; 0 &amp; 1 &amp; -3 \\
16
0 &amp; 1 &amp; 0 &amp; 1
17
\end{array}\right] = \left[\begin{array}{cccc}
18
1 &amp; 0 &amp; 0 &amp; -2 \\
19
0 &amp; 1 &amp; 0 &amp; 1 \\
20
0 &amp; 0 &amp; 1 &amp; -3 \\
21
0 &amp; 0 &amp; 0 &amp; 0
22
\end{array}\right] </me>
23
</p>
24
<ol>
25
<li><m>T</m> is not injective</li>
26
<li><m>T</m> is not surjective</li>
27
</ol>
28
</answer>
29
</exercise>
30
31
32