Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
<exercise checkit-seed="0011" checkit-slug="A4" checkit-title="Injectivity and surjectivity">
2
<statement>
3
Let <m>T:\mathbb{R}^ 4 \to \mathbb{R}^ 3 </m> be the linear transformation given by the standard matrix
4
<m> \left[\begin{array}{cccc}
5
-2 &amp; -3 &amp; -1 &amp; 5 \\
6
1 &amp; 1 &amp; 0 &amp; -2 \\
7
0 &amp; 3 &amp; 3 &amp; -3
8
\end{array}\right] .</m><ol><li>Explain why <m>T</m> is or is not injective.</li><li>Explain why <m>T</m> is or is not surjective.</li></ol></statement>
9
<answer>
10
<p>
11
<me>\operatorname{RREF} \left[\begin{array}{cccc}
12
-2 &amp; -3 &amp; -1 &amp; 5 \\
13
1 &amp; 1 &amp; 0 &amp; -2 \\
14
0 &amp; 3 &amp; 3 &amp; -3
15
\end{array}\right] = \left[\begin{array}{cccc}
16
1 &amp; 0 &amp; -1 &amp; -1 \\
17
0 &amp; 1 &amp; 1 &amp; -1 \\
18
0 &amp; 0 &amp; 0 &amp; 0
19
\end{array}\right] </me>
20
</p>
21
<ol>
22
<li><m>T</m> is not injective</li>
23
<li><m>T</m> is not surjective</li>
24
</ol>
25
</answer>
26
</exercise>
27
28
29