Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23128 views
ubuntu2004
1
2
\begin{exercise}{E2}{Reduced row echelon form}{0000}
3
\begin{exerciseStatement}
4
5
\begin{enumerate}[(a)]
6
\item Show that \[\operatorname{RREF} \left[\begin{array}{ccccc}
7
1 & -2 & -1 & 3 & 4 \\
8
2 & -3 & -3 & 5 & 6 \\
9
0 & -5 & 5 & 5 & 10
10
\end{array}\right] = \left[\begin{array}{ccccc}
11
1 & 0 & -3 & 1 & 0 \\
12
0 & 1 & -1 & -1 & -2 \\
13
0 & 0 & 0 & 0 & 0
14
\end{array}\right] .\]
15
\item Explain why the matrix \(B= \left[\begin{array}{ccccc}
16
1 & 4 & 0 & -1 & 1 \\
17
-5 & -20 & 1 & 7 & -6 \\
18
0 & 0 & 0 & 0 & 0
19
\end{array}\right] \) is or is not in reduced row echelon form.
20
\end{enumerate}
21
22
\end{exerciseStatement}
23
\begin{exerciseAnswer}
24
25
\begin{enumerate}[(a)]
26
\item \(\operatorname{RREF} \left[\begin{array}{ccccc}
27
1 & -2 & -1 & 3 & 4 \\
28
2 & -3 & -3 & 5 & 6 \\
29
0 & -5 & 5 & 5 & 10
30
\end{array}\right] = \left[\begin{array}{ccccc}
31
1 & 0 & -3 & 1 & 0 \\
32
0 & 1 & -1 & -1 & -2 \\
33
0 & 0 & 0 & 0 & 0
34
\end{array}\right] .\)
35
\item \(B\) is not in reduced row echelon form because not every entry above and below each pivot is zero.
36
\end{enumerate}
37
38
\end{exerciseAnswer}
39
\end{exercise}
40
41
42