<item ident="G4-0000" title="G4 | Eigenvectors | ver. 0000"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>G4.</strong> </p> <p>Explain how to find a basis for the eigenspace associated to the eigenvalue <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?-1" alt="-1" title="-1" data-latex="-1"/> in the matrix <p style="text-align:center;"><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\left[\begin{array}{cccc} -2 & -1 & 0 & 1 \\ -2 & -4 & 4 & 6 \\ -2 & -2 & 0 & 3 \\ -1 & -2 & 3 & 3 \end{array}\right]" alt="\left[\begin{array}{cccc} -2 & -1 & 0 & 1 \\ -2 & -4 & 4 & 6 \\ -2 & -2 & 0 & 3 \\ -1 & -2 & 3 & 3 \end{array}\right]" title="\left[\begin{array}{cccc} -2 & -1 & 0 & 1 \\ -2 & -4 & 4 & 6 \\ -2 & -2 & 0 & 3 \\ -1 & -2 & 3 & 3 \end{array}\right]" data-latex="\left[\begin{array}{cccc} -2 & -1 & 0 & 1 \\ -2 & -4 & 4 & 6 \\ -2 & -2 & 0 & 3 \\ -1 & -2 & 3 & 3 \end{array}\right]"/></p></p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>G4.</strong> </p> <p>Explain how to find a basis for the eigenspace associated to the eigenvalue <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?-1" alt="-1" title="-1" data-latex="-1"> in the matrix </p> <p style="text-align:center;"><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%20-2%20&amp;%20-1%20&amp;%200%20&amp;%201%20%5C%5C%20-2%20&amp;%20-4%20&amp;%204%20&amp;%206%20%5C%5C%20-2%20&amp;%20-2%20&amp;%200%20&amp;%203%20%5C%5C%20-1%20&amp;%20-2%20&amp;%203%20&amp;%203%20%5Cend%7Barray%7D%5Cright%5D" alt="\left[\begin{array}{cccc} -2 &amp; -1 &amp; 0 &amp; 1 \\ -2 &amp; -4 &amp; 4 &amp; 6 \\ -2 &amp; -2 &amp; 0 &amp; 3 \\ -1 &amp; -2 &amp; 3 &amp; 3 \end{array}\right]" title="\left[\begin{array}{cccc} -2 &amp; -1 &amp; 0 &amp; 1 \\ -2 &amp; -4 &amp; 4 &amp; 6 \\ -2 &amp; -2 &amp; 0 &amp; 3 \\ -1 &amp; -2 &amp; 3 &amp; 3 \end{array}\right]" data-latex="\left[\begin{array}{cccc} -2 &amp; -1 &amp; 0 &amp; 1 \\ -2 &amp; -4 &amp; 4 &amp; 6 \\ -2 &amp; -2 &amp; 0 &amp; 3 \\ -1 &amp; -2 &amp; 3 &amp; 3 \end{array}\right]"></p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\operatorname{RREF} \left[\begin{array}{cccc} -1 & -1 & 0 & 1 \\ -2 & -3 & 4 & 6 \\ -2 & -2 & 1 & 3 \\ -1 & -2 & 3 & 4 \end{array}\right] = \left[\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]" alt="\operatorname{RREF} \left[\begin{array}{cccc} -1 & -1 & 0 & 1 \\ -2 & -3 & 4 & 6 \\ -2 & -2 & 1 & 3 \\ -1 & -2 & 3 & 4 \end{array}\right] = \left[\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]" title="\operatorname{RREF} \left[\begin{array}{cccc} -1 & -1 & 0 & 1 \\ -2 & -3 & 4 & 6 \\ -2 & -2 & 1 & 3 \\ -1 & -2 & 3 & 4 \end{array}\right] = \left[\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]" data-latex="\operatorname{RREF} \left[\begin{array}{cccc} -1 & -1 & 0 & 1 \\ -2 & -3 & 4 & 6 \\ -2 & -2 & 1 & 3 \\ -1 & -2 & 3 & 4 \end{array}\right] = \left[\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]"/> </p> </p> <p>A basis of the eigenspace is <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\left\{ \left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \end{array}\right] \right\}" alt="\left\{ \left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \end{array}\right] \right\}" title="\left\{ \left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \end{array}\right] \right\}" data-latex="\left\{ \left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \end{array}\right] \right\}"/>.</p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Coperatorname%7BRREF%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%20-1%20&amp;%20-1%20&amp;%200%20&amp;%201%20%5C%5C%20-2%20&amp;%20-3%20&amp;%204%20&amp;%206%20%5C%5C%20-2%20&amp;%20-2%20&amp;%201%20&amp;%203%20%5C%5C%20-1%20&amp;%20-2%20&amp;%203%20&amp;%204%20%5Cend%7Barray%7D%5Cright%5D%20=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%201%20&amp;%200%20&amp;%200%20&amp;%20-1%20%5C%5C%200%20&amp;%201%20&amp;%200%20&amp;%200%20%5C%5C%200%20&amp;%200%20&amp;%201%20&amp;%201%20%5C%5C%200%20&amp;%200%20&amp;%200%20&amp;%200%20%5Cend%7Barray%7D%5Cright%5D" alt="\operatorname{RREF} \left[\begin{array}{cccc} -1 &amp; -1 &amp; 0 &amp; 1 \\ -2 &amp; -3 &amp; 4 &amp; 6 \\ -2 &amp; -2 &amp; 1 &amp; 3 \\ -1 &amp; -2 &amp; 3 &amp; 4 \end{array}\right] = \left[\begin{array}{cccc} 1 &amp; 0 &amp; 0 &amp; -1 \\ 0 &amp; 1 &amp; 0 &amp; 0 \\ 0 &amp; 0 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 0 &amp; 0 \end{array}\right]" title="\operatorname{RREF} \left[\begin{array}{cccc} -1 &amp; -1 &amp; 0 &amp; 1 \\ -2 &amp; -3 &amp; 4 &amp; 6 \\ -2 &amp; -2 &amp; 1 &amp; 3 \\ -1 &amp; -2 &amp; 3 &amp; 4 \end{array}\right] = \left[\begin{array}{cccc} 1 &amp; 0 &amp; 0 &amp; -1 \\ 0 &amp; 1 &amp; 0 &amp; 0 \\ 0 &amp; 0 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 0 &amp; 0 \end{array}\right]" data-latex="\operatorname{RREF} \left[\begin{array}{cccc} -1 &amp; -1 &amp; 0 &amp; 1 \\ -2 &amp; -3 &amp; 4 &amp; 6 \\ -2 &amp; -2 &amp; 1 &amp; 3 \\ -1 &amp; -2 &amp; 3 &amp; 4 \end{array}\right] = \left[\begin{array}{cccc} 1 &amp; 0 &amp; 0 &amp; -1 \\ 0 &amp; 1 &amp; 0 &amp; 0 \\ 0 &amp; 0 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 0 &amp; 0 \end{array}\right]"> </p> <p>A basis of the eigenspace is <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Cleft%5C%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%201%20%5C%5C%200%20%5C%5C%20-1%20%5C%5C%201%20%5Cend%7Barray%7D%5Cright%5D%20%5Cright%5C%7D" alt="\left\{ \left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \end{array}\right] \right\}" title="\left\{ \left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \end{array}\right] \right\}" data-latex="\left\{ \left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \end{array}\right] \right\}">.</p> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>