<exercise checkit-seed="0001" checkit-slug="G4" checkit-title="Eigenvectors">
<statement>
<p>Explain how to find a basis for the eigenspace associated to the eigenvalue <m> 2 </m> in the matrix <me> \left[\begin{array}{cccc}
4 & 8 & 1 & -4 \\
2 & 10 & -1 & -4 \\
1 & 4 & -1 & -2 \\
-1 & -4 & -2 & 4
\end{array}\right] </me></p>
</statement>
<answer>
<p>
<me>\operatorname{RREF} \left[\begin{array}{cccc}
2 & 8 & 1 & -4 \\
2 & 8 & -1 & -4 \\
1 & 4 & -3 & -2 \\
-1 & -4 & -2 & 2
\end{array}\right] = \left[\begin{array}{cccc}
1 & 4 & 0 & -2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] </me>
</p>
<p>A basis of the eigenspace is <m> \left\{ \left[\begin{array}{c}
-4 \\
1 \\
0 \\
0
\end{array}\right] , \left[\begin{array}{c}
2 \\
0 \\
0 \\
1
\end{array}\right] \right\} </m>.</p>
</answer>
</exercise>