Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
2
\begin{exercise}{G4}{Eigenvectors}{0002}
3
\begin{exerciseStatement}
4
5
Explain how to find a basis for the eigenspace associated to the eigenvalue \( 1 \) in the matrix \[ \left[\begin{array}{cccc}
6
0 & -5 & -1 & -6 \\
7
-2 & -4 & -1 & -5 \\
8
-1 & -4 & 0 & -5 \\
9
0 & -3 & -1 & -4
10
\end{array}\right] \]
11
12
\end{exerciseStatement}
13
\begin{exerciseAnswer}
14
15
\[\operatorname{RREF} \left[\begin{array}{cccc}
16
-1 & -5 & -1 & -6 \\
17
-2 & -5 & -1 & -5 \\
18
-1 & -4 & -1 & -5 \\
19
0 & -3 & -1 & -5
20
\end{array}\right] = \left[\begin{array}{cccc}
21
1 & 0 & 0 & -1 \\
22
0 & 1 & 0 & 1 \\
23
0 & 0 & 1 & 2 \\
24
0 & 0 & 0 & 0
25
\end{array}\right] \]
26
27
28
29
A basis of the eigenspace is \( \left\{ \left[\begin{array}{c}
30
1 \\
31
-1 \\
32
-2 \\
33
1
34
\end{array}\right] \right\} \).
35
36
\end{exerciseAnswer}
37
\end{exercise}
38
39
40