<exercise checkit-seed="0008" checkit-slug="G4" checkit-title="Eigenvectors">
<statement>
<p>Explain how to find a basis for the eigenspace associated to the eigenvalue <m> 2 </m> in the matrix <me> \left[\begin{array}{cccc}
3 & -2 & -3 & -3 \\
-1 & 7 & 3 & 6 \\
1 & 0 & -1 & -1 \\
0 & -1 & 0 & 1
\end{array}\right] </me></p>
</statement>
<answer>
<p>
<me>\operatorname{RREF} \left[\begin{array}{cccc}
1 & -2 & -3 & -3 \\
-1 & 5 & 3 & 6 \\
1 & 0 & -3 & -1 \\
0 & -1 & 0 & -1
\end{array}\right] = \left[\begin{array}{cccc}
1 & 0 & -3 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] </me>
</p>
<p>A basis of the eigenspace is <m> \left\{ \left[\begin{array}{c}
3 \\
0 \\
1 \\
0
\end{array}\right] , \left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right] \right\} </m>.</p>
</answer>
</exercise>