\begin{exercise}{G4}{Eigenvectors}{0008}
\begin{exerciseStatement}
Explain how to find a basis for the eigenspace associated to the eigenvalue \( 2 \) in the matrix \[ \left[\begin{array}{cccc}
3 & -2 & -3 & -3 \\
-1 & 7 & 3 & 6 \\
1 & 0 & -1 & -1 \\
0 & -1 & 0 & 1
\end{array}\right] \]
\end{exerciseStatement}
\begin{exerciseAnswer}
\[\operatorname{RREF} \left[\begin{array}{cccc}
1 & -2 & -3 & -3 \\
-1 & 5 & 3 & 6 \\
1 & 0 & -3 & -1 \\
0 & -1 & 0 & -1
\end{array}\right] = \left[\begin{array}{cccc}
1 & 0 & -3 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \]
A basis of the eigenspace is \( \left\{ \left[\begin{array}{c}
3 \\
0 \\
1 \\
0
\end{array}\right] , \left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right] \right\} \).
\end{exerciseAnswer}
\end{exercise}