Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
2
\begin{exercise}{G4}{Eigenvectors}{0011}
3
\begin{exerciseStatement}
4
5
Explain how to find a basis for the eigenspace associated to the eigenvalue \( 1 \) in the matrix \[ \left[\begin{array}{cccc}
6
2 & 2 & 1 & -3 \\
7
0 & 2 & 1 & -1 \\
8
-5 & 3 & 9 & 2 \\
9
-5 & 1 & 6 & 5
10
\end{array}\right] \]
11
12
\end{exerciseStatement}
13
\begin{exerciseAnswer}
14
15
\[\operatorname{RREF} \left[\begin{array}{cccc}
16
1 & 2 & 1 & -3 \\
17
0 & 1 & 1 & -1 \\
18
-5 & 3 & 8 & 2 \\
19
-5 & 1 & 6 & 4
20
\end{array}\right] = \left[\begin{array}{cccc}
21
1 & 0 & -1 & -1 \\
22
0 & 1 & 1 & -1 \\
23
0 & 0 & 0 & 0 \\
24
0 & 0 & 0 & 0
25
\end{array}\right] \]
26
27
28
29
A basis of the eigenspace is \( \left\{ \left[\begin{array}{c}
30
1 \\
31
-1 \\
32
1 \\
33
0
34
\end{array}\right] , \left[\begin{array}{c}
35
1 \\
36
1 \\
37
0 \\
38
1
39
\end{array}\right] \right\} \).
40
41
\end{exerciseAnswer}
42
\end{exercise}
43
44
45