<exercise checkit-seed="0010" checkit-slug="M2" checkit-title="Row operations as matrix multiplication">
<statement>
<p>Let <m>A</m> be a <m>4 \times 4</m> matrix.</p>
<ol>
<li>Give a <m>4 \times 4</m> matrix <m>M</m> that may be used to perform the row operation <m> R_1 \leftrightarrow R_4 </m>.</li>
<li>Give a <m>4 \times 4</m> matrix <m>N</m> that may be used to perform the row operation <m> R_4 \to 4R_4 </m>.</li>
<li>Use matrix multiplication to describe the matrix obtained by applying
<m> R_1 \leftrightarrow R_4 </m> and then <m> R_4 \to 4R_4 </m>
to <m>A</m> (note the order).
</li>
</ol>
</statement>
<answer>
<ol>
<li>
<m>M= \left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] </m>
</li>
<li>
<m>N= \left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] </m>
</li>
<li>
<m>NMA</m>
</li>
</ol>
</answer>
</exercise>