<item ident="V1-0001" title="V1 | Vector spaces | ver. 0001"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>V1.</strong> </p> <p> Let <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"/> be the set of all pairs <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(x,y)" alt="(x,y)" title="(x,y)" data-latex="(x,y)"/> of real numbers together with the following operations: </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" alt="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" title="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" data-latex="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?c \odot (x,y) = \left(c^{2} x,\,c^{3} y\right) ." alt="c \odot (x,y) = \left(c^{2} x,\,c^{3} y\right) ." title="c \odot (x,y) = \left(c^{2} x,\,c^{3} y\right) ." data-latex="c \odot (x,y) = \left(c^{2} x,\,c^{3} y\right) ."/> </p> <p> (a) Show that scalar multiplication distributes over vector addition, that is: </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?c\odot \left((x_1,y_1)\oplus(x_2,y_2)\right)=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2)." alt="c\odot \left((x_1,y_1)\oplus(x_2,y_2)\right)=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2)." title="c\odot \left((x_1,y_1)\oplus(x_2,y_2)\right)=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2)." data-latex="c\odot \left((x_1,y_1)\oplus(x_2,y_2)\right)=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2)."/> </p> <p> (b) Explain why <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"/> nonetheless is not a vector space. </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>V1.</strong> </p> <p> Let <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"> be the set of all pairs <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(x,y)" alt="(x,y)" title="(x,y)" data-latex="(x,y)"> of real numbers together with the following operations: </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(x_1,y_1)%5Coplus%20(x_2,y_2)=%20%5Cleft(x_%7B1%7D%20+%20x_%7B2%7D,%5C,y_%7B1%7D%20+%20y_%7B2%7D%5Cright)" alt="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" title="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" data-latex="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?c%20%5Codot%20(x,y)%20=%20%5Cleft(c%5E%7B2%7D%20x,%5C,c%5E%7B3%7D%20y%5Cright)%20." alt="c \odot (x,y) = \left(c^{2} x,\,c^{3} y\right) ." title="c \odot (x,y) = \left(c^{2} x,\,c^{3} y\right) ." data-latex="c \odot (x,y) = \left(c^{2} x,\,c^{3} y\right) ."> </p> <p> (a) Show that scalar multiplication distributes over vector addition, that is: </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?c%5Codot%20%5Cleft((x_1,y_1)%5Coplus(x_2,y_2)%5Cright)=c%5Codot(x_1,y_1)%5Coplus%20c%5Codot(x_2,y_2)." alt="c\odot \left((x_1,y_1)\oplus(x_2,y_2)\right)=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2)." title="c\odot \left((x_1,y_1)\oplus(x_2,y_2)\right)=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2)." data-latex="c\odot \left((x_1,y_1)\oplus(x_2,y_2)\right)=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2)."> </p> <p> (b) Explain why <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"> nonetheless is not a vector space. </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"/> is not a vector space, which may be shown by demonstrating that any one of the following properties do not hold: </p> <ul> <li>scalar multiplication does not distribute over scalar addition</li> </ul> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"> is not a vector space, which may be shown by demonstrating that any one of the following properties do not hold: </p> <ul> <li>scalar multiplication does not distribute over scalar addition</li> </ul> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>