\begin{exercise}{V1}{Vector spaces}{0004}
\begin{exerciseStatement}
Let \(V\) be the set of all pairs \((x,y)\) of real numbers together with the following operations:
\[(x_1,y_1)\oplus (x_2,y_2)= \left(4 \, x_{1} + 4 \, x_{2},\,4 \, y_{1} + 4 \, y_{2}\right) \]\[c \odot (x,y) = \left(c x,\,c y\right) .\]
(a) Show that scalar multiplication distributes over vector addition, that is:
\[c\odot \left((x_1,y_1)\oplus(x_2,y_2)\right)=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2).
\]
(b) Explain why \(V\) nonetheless is not a vector space.
\end{exerciseStatement}
\begin{exerciseAnswer}
\(V\) is not a vector space, which may be shown by demonstrating that any one of the following properties do not hold:
\begin{itemize}
\item vector addition is not associative
\item scalar multiplication does not distribute over scalar addition
\end{itemize}
\end{exerciseAnswer}
\end{exercise}