Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
2
\begin{exercise}{V2}{Linear combinations}{0008}
3
\begin{exerciseStatement}
4
5
Consider the following statement.
6
7
8
9
\begin{itemize}
10
\item The vector \( \left[\begin{array}{c}
11
7 \\
12
2 \\
13
-5 \\
14
-3
15
\end{array}\right] \)is a linear combination of the vectors \( \left[\begin{array}{c}
16
1 \\
17
-2 \\
18
1 \\
19
-1
20
\end{array}\right] , \left[\begin{array}{c}
21
2 \\
22
1 \\
23
-4 \\
24
2
25
\end{array}\right] , \left[\begin{array}{c}
26
2 \\
27
2 \\
28
-5 \\
29
-2
30
\end{array}\right] , \left[\begin{array}{c}
31
-12 \\
32
-4 \\
33
21 \\
34
4
35
\end{array}\right] , \text{ and } \left[\begin{array}{c}
36
0 \\
37
7 \\
38
-8 \\
39
-4
40
\end{array}\right] \).
41
\end{itemize}
42
43
44
45
\begin{enumerate}[(a)]
46
\item Write an equivalent statement using a vector equation.
47
\item Explain why your statement is true or false.
48
\end{enumerate}
49
50
\end{exerciseStatement}
51
\begin{exerciseAnswer}\[\operatorname{RREF} \left[\begin{array}{ccccc|c}
52
1 & 2 & 2 & -12 & 0 & 7 \\
53
-2 & 1 & 2 & -4 & 7 & 2 \\
54
1 & -4 & -5 & 21 & -8 & -5 \\
55
-1 & 2 & -2 & 4 & -4 & -3
56
\end{array}\right] = \left[\begin{array}{ccccc|c}
57
1 & 0 & 0 & -2 & -2 & 0 \\
58
0 & 1 & 0 & -2 & -1 & 0 \\
59
0 & 0 & 1 & -3 & 2 & 0 \\
60
0 & 0 & 0 & 0 & 0 & 1
61
\end{array}\right] \]
62
63
\begin{enumerate}[(a)]
64
\item The vector equation \( x_{1} \left[\begin{array}{c}
65
1 \\
66
-2 \\
67
1 \\
68
-1
69
\end{array}\right] + x_{2} \left[\begin{array}{c}
70
2 \\
71
1 \\
72
-4 \\
73
2
74
\end{array}\right] + x_{3} \left[\begin{array}{c}
75
2 \\
76
2 \\
77
-5 \\
78
-2
79
\end{array}\right] + x_{4} \left[\begin{array}{c}
80
-12 \\
81
-4 \\
82
21 \\
83
4
84
\end{array}\right] + x_{5} \left[\begin{array}{c}
85
0 \\
86
7 \\
87
-8 \\
88
-4
89
\end{array}\right] = \left[\begin{array}{c}
90
7 \\
91
2 \\
92
-5 \\
93
-3
94
\end{array}\right] \)has a solution.
95
\item
96
97
\( \left[\begin{array}{c}
98
7 \\
99
2 \\
100
-5 \\
101
-3
102
\end{array}\right] \) is not a linear combination of the vectors \( \left[\begin{array}{c}
103
1 \\
104
-2 \\
105
1 \\
106
-1
107
\end{array}\right] , \left[\begin{array}{c}
108
2 \\
109
1 \\
110
-4 \\
111
2
112
\end{array}\right] , \left[\begin{array}{c}
113
2 \\
114
2 \\
115
-5 \\
116
-2
117
\end{array}\right] , \left[\begin{array}{c}
118
-12 \\
119
-4 \\
120
21 \\
121
4
122
\end{array}\right] , \text{ and } \left[\begin{array}{c}
123
0 \\
124
7 \\
125
-8 \\
126
-4
127
\end{array}\right] \).
128
129
130
\end{enumerate}
131
132
\end{exerciseAnswer}
133
\end{exercise}
134
135
136