CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download
Project: test
Views: 91872
Kernel: Unknown Kernel

Compare 1d kalman filter with full kalman filter with only 1 observed state variable.

from __future__ import division import numpy as np def predict(pos, variance, movement, movement_variance): return (pos + movement, variance + movement_variance) def update(mean, variance, measurement, measurement_variance): return multiply(mean, variance, measurement, measurement_variance) def multiply(mu1, var1, mu2, var2): mean = (var1*mu2 + var2*mu1) / (var1+var2) variance = 1 / (1/var1 + 1/var2) return (mean, variance)
%matplotlib inline from numpy.random import randn import numpy as np from filterpy.kalman import KalmanFilter from filterpy.leastsq import LeastSquaresFilter import matplotlib.pyplot as plt import matplotlib.pylab as pylab pylab.rcParams['figure.figsize'] = (16.0, 16.0) lsq = LeastSquaresFilter(dt=1, order=2, noise_variance = 5) f = KalmanFilter(dim_x=1, dim_z=1, dim_u=1) f.P = 500 f.H = np.array([[1.]]) f.F = np.array([[1.]]) f.B = np.array([[1.]]) f.Q = 3 f.R = 5 pos = (0., 500.) print (pos) plt.figure() for i in range(50): z = i + randn() pos = update(pos[0], pos[1], z, 5) x = lsq(z) f.update(z) plt.scatter(i, pos[0], c='b') plt.scatter(i, x, c='g') plt.scatter(i, f.x[0,0], c='r') assert abs(pos[0]- f.x[0,0]) < 1.e-12 pos = predict(pos[0], pos[1], 1., 3.) f.predict(u=1) plt.show()
(0.0, 500.0)
%matplotlib inline from numpy.random import randn import numpy as np from filterpy.kalman import KalmanFilter from filterpy.leastsq import LeastSquaresFilter import matplotlib.pyplot as plt import matplotlib.pylab as pylab pylab.rcParams['figure.figsize'] = (16.0, 16.0) lsq = LeastSquaresFilter(dt=1, order=2, noise_variance = 5) f = KalmanFilter(dim_x=1, dim_z=1, dim_u=1) f.P = 500 f.H = np.array([[1.]]) f.F = np.array([[1.]]) f.B = np.array([[1.]]) f.Q = .02 f.R = 5 kxs = [] lxs = [] kKs = [] lKs = [] zs = [] for i in range(500): z = i + randn()*5 zs.append(z) lsq(z) f.update(z) kxs.append(f.x[0,0]) lxs.append(lsq.x) kKs.append(f.K[0,0]) lKs.append(lsq.K2) f.predict(u=1) plt.figure() plt.plot (kxs, c='b') plt.plot (lxs, c='g') plt.plot (zs, c='r') plt.figure() plt.plot (kKs, c='b') plt.plot (lKs, c='r') plt.show()
print(lKs[-1]) print(kKs[-1])
0.00014299687477634373 0.0612771680782
# pos,vel filter %matplotlib inline from numpy.random import randn import numpy as np from filterpy.kalman import KalmanFilter from filterpy.leastsq import LeastSquaresFilter import matplotlib.pyplot as plt import matplotlib.pylab as pylab pylab.rcParams['figure.figsize'] = (16.0, 16.0) lsq = LeastSquaresFilter(dt=1, order=2, noise_variance = 5) f = KalmanFilter(dim_x=2, dim_z=1, dim_u=0) f.P *= 500 f.F = np.array([[1., 1.], [0., 1.]]) f.H = np.array([[1., 0.]]) f.Q *= .001 f.R *= 5 kxs = [] lxs = [] kKs = [] lKs = [] zs = [] for i in range(100): z = i + randn()*5 zs.append(z) lsq(z) f.update(z) kxs.append(f.x[0,0]) lxs.append(lsq.x) kKs.append(f.K[0,0]) lKs.append(lsq.K2) f.predict(u=1) plt.figure() plt.plot (kxs, c='b') plt.plot (lxs, c='g') plt.plot (zs, c='r') plt.figure() plt.plot (kKs, c='b') plt.plot (lKs, c='r') plt.show() #print(f.K)
[[ 0.15538196] [ 0.01299707]]
#testing a constant K gain filter implementation from numpy import dot class kf(object): def __init__ (self): self.H = 1 self.x = 0 self.y = 0 self.F = 1 self.B = 0 self.K = 1 def update(self, Z): self.y = Z - dot(self.H, self.x) # x = x + Ky # predict new x with residual scaled by the kalman gain self.x = self.x + dot(self.K, self.y) def predict(self, u=0): # x = Fx + Bu self._x = dot(self.F, self.x) + dot(self.B, u) k = kf() k.x = np.array([[1., 0.]]).T k.F = np.array([[1., 1.], [0., 1.]]) k.H = np.array([[1., 0.]]) k.K = np.array([[0.15538196, 0.01299707]]).T lsq = LeastSquaresFilter(dt=1, order=2, noise_variance = 5) kxs = [] lxs = [] zs = [] for i in range(1,100): z = i + randn()*5 zs.append(z) lsq(z) k.predict() k.update(z) kxs.append(k.x[0,0]) lxs.append(lsq.x) plt.figure() plt.plot (kxs, c='b') plt.plot (lxs, c='g') plt.plot (zs, c='r') plt.show()