�
�g�Uc @` s� d Z d d l m Z m Z m Z m Z d d l m Z d d l m Z d d l
Z d d l
m Z m
Z
m Z m Z m Z d d l m Z m Z d e f d � � YZ d S(
u4 Copyright 2015 Roger R Labbe Jr.
FilterPy library.
http://github.com/rlabbe/filterpy
Documentation at:
https://filterpy.readthedocs.org
Supporting book at:
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the readme.MD file
for more information.
i ( t absolute_importt divisiont print_functiont unicode_literals( t dot3( t unscented_transformN( t eyet zerost dott isscalart outer( t invt choleskyt UnscentedKalmanFilterc B` sk e Z d Z d d d d d d � Z d d d d � Z d d d d � Z d d d d � Z d d d � Z RS( u� Implements the Scaled Unscented Kalman filter (UKF) as defined by
Simon Julier in [1], using the formulation provided by Wan and Merle
in [2]. This filter scales the sigma points to avoid strong nonlinearities.
You will have to set the following attributes after constructing this
object for the filter to perform properly.
**Attributes**
x : numpy.array(dim_x)
state estimate vector
P : numpy.array(dim_x, dim_x)
covariance estimate matrix
R : numpy.array(dim_z, dim_z)
measurement noise matrix
Q : numpy.array(dim_x, dim_x)
process noise matrix
You may read the following attributes.
**Readable Attributes**
xp : numpy.array(dim_x)
predicted state (result of predict())
Pp : numpy.array(dim_x, dim_x)
predicted covariance matrix (result of predict())
**References**
.. [1] Julier, Simon J. "The scaled unscented transformation,"
American Control Converence, 2002, pp 4555-4559, vol 6.
Online copy:
https://www.cs.unc.edu/~welch/kalman/media/pdf/ACC02-IEEE1357.PDF
.. [2] E. A. Wan and R. Van der Merwe, “The unscented Kalman filter for
nonlinear estimation,” in Proc. Symp. Adaptive Syst. Signal
Process., Commun. Contr., Lake Louise, AB, Canada, Oct. 2000.
Online Copy:
https://www.seas.harvard.edu/courses/cs281/papers/unscented.pdf
c C` s[ t | � | _ t | � | _ t | � | _ t | � | _ | | _ | | _ | | _ d | d | _ | | _
| | _ | | _ | | _
| | _ | d k r� t | _ n | | _ | j j � \ | _ | _ |
d k r� t j | _ n |
| _ | d k rt j | _ n | | _ t d | j d | j f � | _ t | j | j f � | _ d S( u� Create a Kalman filter. You are responsible for setting the
various state variables to reasonable values; the defaults below will
not give you a functional filter.
**Parameters**
dim_x : int
Number of state variables for the filter. For example, if
you are tracking the position and velocity of an object in two
dimensions, dim_x would be 4.
dim_z : int
Number of of measurement inputs. For example, if the sensor
provides you with position in (x,y), dim_z would be 2.
dt : float
Time between steps in seconds.
hx : function(x)
Measurement function. Converts state vector x into a measurement
vector of shape (dim_z).
fx : function(x,dt)
function that returns the state x transformed by the
state transistion function. dt is the time step in seconds.
points : class
Class which computes the sigma points and weights for a UKF
algorithm. You can vary the UKF implementation by changing this
class. For example, MerweScaledSigmaPoints implements the alpha,
beta, kappa parameterization of Van der Merwe, and
JulierSigmaPoints implements Julier's original kappa
parameterization. See either of those for the required
signature of this class if you want to implement your own.
sqrt_fn : callable(ndarray), default = scipy.linalg.cholesky
Defines how we compute the square root of a matrix, which has
no unique answer. Cholesky is the default choice due to its
speed. Typically your alternative choice will be
scipy.linalg.sqrtm. Different choices affect how the sigma points
are arranged relative to the eigenvectors of the covariance matrix.
Usually this will not matter to you; if so the default cholesky()
yields maximal performance. As of van der Merwe's dissertation of
2004 [6] this was not a well reseached area so I have no advice
to give you.
If your method returns a triangular matrix it must be upper
triangular. Do not use numpy.linalg.cholesky - for historical
reasons it returns a lower triangular matrix. The SciPy version
does the right thing.
x_mean_fn : callable (sigma_points, weights), optional
Function that computes the mean of the provided sigma points
and weights. Use this if your state variable contains nonlinear
values such as angles which cannot be summed.
.. code-block:: Python
def state_mean(sigmas, Wm):
x = np.zeros(3)
sum_sin, sum_cos = 0., 0.
for i in range(len(sigmas)):
s = sigmas[i]
x[0] += s[0] * Wm[i]
x[1] += s[1] * Wm[i]
sum_sin += sin(s[2])*Wm[i]
sum_cos += cos(s[2])*Wm[i]
x[2] = atan2(sum_sin, sum_cos)
return x
z_mean_fn : callable (sigma_points, weights), optional
Same as x_mean_fn, except it is called for sigma points which
form the measurements after being passed through hx().
residual_x : callable (x, y), optional
residual_z : callable (x, y), optional
Function that computes the residual (difference) between x and y.
You will have to supply this if your state variable cannot support
subtraction, such as angles (359-1 degreees is 2, not 358). x and y
are state vectors, not scalars. One is for the state variable,
the other is for the measurement state.
.. code-block:: Python
def residual(a, b):
y = a[0] - b[0]
if y > np.pi:
y -= 2*np.pi
if y < -np.pi:
y = 2*np.pi
return y
**References**
.. [3] S. Julier, J. Uhlmann, and H. Durrant-Whyte. "A new method for
the nonlinear transformation of means and covariances in filters
and estimators," IEEE Transactions on Automatic Control, 45(3),
pp. 477-482 (March 2000).
.. [4] E. A. Wan and R. Van der Merwe, “The Unscented Kalman filter for
Nonlinear Estimation,” in Proc. Symp. Adaptive Syst. Signal
Process., Commun. Contr., Lake Louise, AB, Canada, Oct. 2000.
https://www.seas.harvard.edu/courses/cs281/papers/unscented.pdf
.. [5] Wan, Merle "The Unscented Kalman Filter," chapter in *Kalman
Filtering and Neural Networks*, John Wiley & Sons, Inc., 2001.
.. [6] R. Van der Merwe "Sigma-Point Kalman Filters for Probabilitic
Inference in Dynamic State-Space Models" (Doctoral dissertation)
i i N( R t Qt RR t xt Pt _dim_xt _dim_zt _dtt _num_sigmast hxt fxt points_fnt x_meant z_meant NoneR t msqrtt weightst Wmt Wct npt subtractt
residual_xt
residual_zt sigmas_ft sigmas_h( t selft dim_xt dim_zt dtR R t pointst sqrt_fnt x_mean_fnt z_mean_fnR"