get_ipython().run_line_magic('matplotlib', 'inline')
import numpy as np
from pylab import *
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
SMALL_SIZE = 10
MEDIUM_SIZE = 20
BIGGER_SIZE = 24
plt.rc('font', size=BIGGER_SIZE)
plt.rc('axes', titlesize=SMALL_SIZE)
plt.rc('axes', labelsize=BIGGER_SIZE)
plt.rc('xtick', labelsize=SMALL_SIZE)
plt.rc('ytick', labelsize=SMALL_SIZE)
plt.rc('legend', fontsize=SMALL_SIZE)
plt.rc('axes', labelpad=30)
plt.rc('text', usetex=True)
mpl.rcParams['figure.dpi'] = 300
rod_pine = np.loadtxt('Rod_particle_ine_drift.txt')
disk_pine = np.loadtxt('Disk_particle_ine_drift.txt')
rod_fine = np.loadtxt('Rod_fluid_ine_drift.txt')
disk_fine = np.loadtxt('Disk_fluid_ine_drift.txt')
k = sym.symbols('\kappa')
xi = sym.symbols('xi', positive=True)
xib= sym.symbols("\overline{xi}", positive=True)
C = sym.symbols('C')
def invcoth(val):
return 0.5 * sym.log((val+1)/(val-1))
F1p_def = (4*xi**4-7*xi**2+3)*(xi**2*invcoth(xi)+invcoth(xi)-xi)/(160*xi*(1-2*xi**2)**2)
F2p_def = xib**4*(invcoth(xi)+xi*(xi*invcoth(xi)-1))/(40*xi*(1-2*xi**2)**2)
F3p_def = - xib**2*(xi**2*invcoth(xi)+invcoth(xi)-xi)/(160*xi*(1-2*xi**2)**2)
F4p_def = F3p_def
F5p_def = -F3p_def / 2
F6p_def = F5p_def
G1p_def = -(3*xi**4-5*xi**2+2)*((xi**2+1)*invcoth(xi)-xi) / (40*xi*(1-2*xi**2)**2)
G2p_def = (xi*(-xi**3+xi+(xi**4-1)*invcoth(xi))) / (40*(1-2*xi**2)**2)
G3p_def = G2p_def / xi**2
G4p_def = - G2p_def / xi**2
F1f_def = (xi**(2)*(-648*xi**(12)+1350*xi**(10)-5571*xi**(8)+11841*xi**(6)-9269*xi**(4)+2263*xi**(2)+6) \
-27*xi**(2)*(24*xi**(8)-14*xi**(6)-19*xi**(4)+16*xi**(2)-3)*xib**(8)*invcoth(xi)**(4)+9*xi \
*(288*xi**(12)-564*xi**(10)-20*xi**(8)+799*xi**(6)-743*xi**(4)+261*xi**(2)-29)*xib**(4) \
* invcoth(xi)**(3)+xi*(2592*xi**(14)-7020*xi**(12)+13932*xi**(10)-21123*xi**(8)+14255*xi**(6) \
-577*xi**(4)-2711*xi**(2)+652)*invcoth(xi)-3*(1296*xi**(16)-4320*xi**(14)+5346*xi**(12) \
-1477*xi**(10)-4260*xi**(8)+6116*xi**(6)-3492*xi**(4)+849*xi**(2)-58)*invcoth(xi)**(2)) \
*(480*xi**(2)*(-1+2*xi**(2))**(3)*(-3*xi**(2)+3*xib**(2)*xi*invcoth(xi)+2) \
*(-3*xi**(3)+5*xi+3*xib**(4)*invcoth(xi))*((3*xi**(2)-1)*invcoth(xi)-3*xi))**(-1)
F2f_def = -(xib**(2)*(-9*xi**(9)+30*xi**(7)-115*xi**(5)+90*xi**(3)-12*xi \
+9*xib**(8)*(xi**(2)+1)*xi**(2)*invcoth(xi)**(3)-3*xib**(4)*(9*xi**(6)-10*xi**(4)-17*xi**(2)+14)*xi*invcoth(xi)**(2) \
+(27*xi**(10)-87*xi**(8)+133*xi**(6)-33*xi**(4)-52*xi**(2)+12)*invcoth(xi))) \
*(40*(xi-2*xi**(3))**(2)*(-3*xi**(2)+3*xib**(2)*xi*invcoth(xi)+2) \
*(-3*xi**(3)+5*xi+3*xib**(4)*invcoth(xi)))**(-1)
F3f_def = -(xi**(2)*(378*xi**(10)+801*xi**(8)-4731*xi**(6)+5551*xi**(4)-2369*xi**(2)+342) \
-27*xi**(2)*(6*xi**(6)+xi**(4)-4*xi**(2)+1)*xib**(8)*invcoth(xi)**(4)+9*xi*(12*xi**(10)+28*xi**(8)-201*xi**(6) \
+273*xi**(4)-147*xi**(2)+27)*xib**(4)*invcoth(xi)**(3)+(-972*xi**(13)-324*xi**(11)+7365*xi**(9) \
-10409*xi**(7)+5143*xi**(5)-847*xi**(3)+44*xi)*invcoth(xi)+3*(216*xi**(14)-378*xi**(12) \
+109*xi**(10)-412*xi**(8)+1204*xi**(6)-1028*xi**(4)+311*xi**(2)-22)*invcoth(xi)**(2)) \
*(480*xi**(2)*(-1+2*xi**(2))**(3)*(-3*xi**(2)+3*xib**(2)*xi*invcoth(xi)+2)*(-3*xi**(3)+5*xi \
+3*xib**(4)*invcoth(xi))*((3*xi**(2)-1)*invcoth(xi)-3*xi))**(-1)
F4f_def = F3f_def
F5f_def = - F3f_def / 2.0
F6f_def = - F3f_def / 2.0
G1f_def = (xi**(2)*(81*xi**(10)-414*xi**(8)+1074*xi**(6)-1162*xi**(4)+479*xi**(2)-54) \
+9*xi**(2)*(9*xi**(6)-7*xi**(2)+2)*xib**(8)*invcoth(xi)**(4)-3*xi*(108*xi**(10)-246*xi**(8)+69*xi**(6) \
+167*xi**(4)-129*xi**(2)+23)*xib**(4)*invcoth(xi)**(3)+(-324*xi**(13)+1566*xi**(11)-3309*xi**(9) \
+3133*xi**(7)-1023*xi**(5)-79*xi**(3)+36*xi)*invcoth(xi) \
+(486*xi**(14)-2214*xi**(12)+3819*xi**(10)-2568*xi**(8)-222*xi**(6)+1036*xi**(4)-355*xi**(2)+18) \
*invcoth(xi)**(2))*(40*(xi-2*xi**(3))**(2)*(-3*xi**(2)+3*xib**(2)*xi*invcoth(xi)+2) \
*(-3*xi**(3)+5*xi+3*xib**(4)*invcoth(xi))*((3*xi**(2)-1)*invcoth(xi)-3*xi))**(-1)
G2f_def = (-xi**(2)*(27*xi**(10)-180*xi**(8)+204*xi**(6)+68*xi**(4)-133*xi**(2)+18) \
-9*xi**(4)*(3*xi**(4)+2*xi**(2)-1)*xib**(8)*invcoth(xi)**(4)+3*xi \
*(36*xi**(10)-78*xi**(8)+73*xi**(6)-69*xi**(4)+35*xi**(2)-5)*xib**(4)*invcoth(xi)**(3) \
+xi*(108*xi**(12)-630*xi**(10)+1041*xi**(8)-617*xi**(6)+115*xi**(4)-29*xi**(2)+12) \
*invcoth(xi)+(-162*xi**(14)+810*xi**(12)-1551*xi**(10)+1600*xi**(8) \
-1054*xi**(6)+448*xi**(4)-97*xi**(2)+6)*invcoth(xi)**(2)) \
*(40*(xi-2*xi**(3))**(2)*(-3*xi**(2)+3*xib**(2)*xi*invcoth(xi)+2) \
*(-3*xi**(3)+5*xi+3*xib**(4)*invcoth(xi))*((3*xi**(2)-1)*invcoth(xi)-3*xi))**(-1)
G3f_def = (xi**(2)*(378*xi**(10)+801*xi**(8)-4731*xi**(6)+5551*xi**(4)-2369*xi**(2)+342) \
-27*xi**(2)*(6*xi**(6)+xi**(4)-4*xi**(2)+1)*xib**(8)*invcoth(xi)**(4) \
+9*xi*(12*xi**(10)+28*xi**(8)-201*xi**(6)+273*xi**(4)-147*xi**(2)+27)*xib**(4)*invcoth(xi)**(3) \
+(-972*xi**(13)-324*xi**(11)+7365*xi**(9)-10409*xi**(7)+5143*xi**(5)-847*xi**(3)+44*xi) \
*invcoth(xi)+3*(216*xi**(14)-378*xi**(12)+109*xi**(10)-412*xi**(8)+1204*xi**(6)-1028*xi**(4) \
+311*xi**(2)-22)*invcoth(xi)**(2))*(120*xi**(2)*(2*xi**(2)-1)**(3)*(-3*xi**(2)+3*xib**(2)*xi*invcoth(xi)+2) \
*(-3*xi**(3)+5*xi+3*xib**(4)*invcoth(xi))*((3*xi**(2)-1)*invcoth(xi)-3*xi))**(-1)
G4f_def = - G3f_def
ee = {'pro_pine' : 1.01,
'obl_pine' : 1.0001,
'pro_fine' : 1.1,
'obl_fine' : 1.0001}
rr = {'prolate' : lambda xi0 : xi0/(xi0**2-1)**0.5,
'oblate' : lambda xi0 : (xi0**2-1)**0.5/xi0}
def shape_coeffs(key,ee):
if(key == 'prolate'):
e0 = ee['pro_pine']
F1p_eff = F1p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F2p_eff = F2p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F3p_eff = F3p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F4p_eff = F4p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F5p_eff = F5p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F6p_eff = F6p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
G1p_eff = G1p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
G2p_eff = G2p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
G3p_eff = G3p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
G4p_eff = G4p_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
e0 = ee['pro_fine']
F1f_eff = F1f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F2f_eff = F2f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F3f_eff = F3f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F4f_eff = F4f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F5f_eff = F5f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
F6f_eff = F6f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
G1f_eff = G1f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
G2f_eff = G2f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
G3f_eff = G3f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
G4f_eff = G4f_def.subs({xib:(xi**2-1)**0.5,xi:e0}).evalf()
else:
e0 = ee['obl_pine']
F1p_tmp = ((F1p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F1p_eff = -sym.re(F1p_tmp.subs({xi:e0}).evalf())
F2p_tmp = ((F2p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F2p_eff = -sym.re(F2p_tmp.subs({xi:e0}).evalf())
F3p_tmp = ((F3p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F3p_eff = -sym.re(F3p_tmp.subs({xi:e0}).evalf())
F4p_tmp = ((F4p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F4p_eff = -sym.re(F4p_tmp.subs({xi:e0}).evalf())
F5p_tmp = ((F5p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F5p_eff = -sym.re(F5p_tmp.subs({xi:e0}).evalf())
F6p_tmp = ((F6p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F6p_eff = -sym.re(F6p_tmp.subs({xi:e0}).evalf())
G1p_tmp = ((G1p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
G1p_eff = -sym.re(G1p_tmp.subs({xi:e0}).evalf())
G2p_tmp = ((G2p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
G2p_eff = -sym.re(G2p_tmp.subs({xi:e0}).evalf())
G3p_tmp = ((G3p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
G3p_eff = -sym.re(G3p_tmp.subs({xi:e0}).evalf())
G4p_tmp = ((G4p_def*xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
G4p_eff = -sym.re(G4p_tmp.subs({xi:e0}).evalf())
e0 = ee['obl_fine']
F1f_tmp = ((F1f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F1f_eff = -sym.re(F1f_tmp.subs({xi:e0}).evalf())
F2f_tmp = ((F2f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F2f_eff = -sym.re(F2f_tmp.subs({xi:e0}).evalf())
F3f_tmp = ((F3f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F3f_eff = -sym.re(F3f_tmp.subs({xi:e0}).evalf())
F4f_tmp = ((F4f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F4f_eff = -sym.re(F4f_tmp.subs({xi:e0}).evalf())
F5f_tmp = ((F5f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F5f_eff = -sym.re(F5f_tmp.subs({xi:e0}).evalf())
F6f_tmp = ((F6f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
F6f_eff = -sym.re(F6f_tmp.subs({xi:e0}).evalf())
G1f_tmp = ((G1f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
G1f_eff = -sym.re(G1f_tmp.subs({xi:e0}).evalf())
G2f_tmp = ((G2f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
G2f_eff = -sym.re(G2f_tmp.subs({xi:e0}).evalf())
G3f_tmp = ((G3f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
G3f_eff = -sym.re(G3f_tmp.subs({xi:e0}).evalf())
G4f_tmp = ((G4f_def * xi**2).subs({xib:(xi**2-1)**0.5,xi:sym.I*(xi**2-1)**0.5}))/(xi**2)
G4f_eff = -sym.re(G4f_tmp.subs({xi:e0}).evalf())
return (F1p_eff,F2p_eff,F3p_eff,F4p_eff,F5p_eff,F6p_eff,G1p_eff,G2p_eff,G3p_eff,G4p_eff,
F1f_eff,F2f_eff,F3f_eff,F4f_eff,F5f_eff,F6f_eff,G1f_eff,G2f_eff,G3f_eff,G4f_eff)
I1=2*sym.pi
I2=2*sym.pi*(k-1)*(k+1)**(-1)
I3=2*sym.pi*(2*((C**(2)+1)*(C**(2)*k**(2)+1))**(-1/2)-1)
I4=2*sym.pi*(k-1)**(2)*(k+1)**(-2)
I5I6 = -(4*sym.pi*(2*k**(2)*(3*sym.sqrt((C**(2)+1)*(C**(2)*k**(2)+1))-8*C**(2)-6) \
+4*k*sym.sqrt((C**(2)+1)*(C**(2)*k**(2)+1)) \
+sym.sqrt((C**(2)+1)*(C**(2)*k**(2)+1))+4*(4*C**(2)+1)*k**(3)*sym.sqrt((C**(2)+1)*(C**(2)*k**(2)+1)) \
+k**(4)*(sym.sqrt((C**(2)+1)*(C**(2)*k**(2)+1))-16*(C**(4)+C**(2))-2)-2)) \
*((k**(2)-1)**(2)*sym.sqrt((C**(2)+1)*(C**(2)*k**(2)+1)))**(-1)
J1=sym.pi*(k**(2)-1)*(k+1)**(-2)
J2 = -sym.pi*(-4*((C**2+1)*(C**2*k**2+1))**0.5+C**2*(k+1)**2+4)*C**(-2)*(k**2-1)**(-1)
J3=sym.pi*(k-1)**(2)*(k+1)**(-2)
J4 = -sym.pi*(k**(2)-1)*(8*C**(4)*k**(3)+C**(2)*((k+1)**(4)-8*k**(2)*sym.sqrt((C**(2)+1)*(C**(2)*k**(2)+1))) \
-4*(k**(2)+1)*(sym.sqrt((C**(2)+1)*(C**(2)*k**(2)+1))-1))*C**(-2)*(k**(2)-1)**(-3)
F1p,F2p,F3p,F4p,F5p,F6p,G1p,G2p,G3p,G4p,F1f,F2f,F3f,F4f,F5f,F6f,G1f,G2f,G3f,G4f = shape_coeffs('prolate',ee)
r = rr['prolate'](ee['pro_pine'])
PINE_pro = (C*(2*xi**2-1)/(xi*xib)*((I1*F1p+I2*F2p+I3*F3p+I4*F4p+(I5I6)*F5p) \
+(J1*G1p+J2*G2p+J3*G3p+J4*G4p))).subs({xib:(xi**2-1)**0.5,xi:ee['pro_pine'],k:r}).evalf()
r = rr['prolate'](ee['pro_fine'])
FINE_pro = (C*(2*xi**2-1)/(xi*xib)*((I1*F1f+I2*F2f+I3*F3f+I4*F4f+(I5I6)*F5f) \
+(J1*G1f+J2*G2f+J3*G3f+J4*G4f))).subs({xib:(xi**2-1)**0.5,xi:ee['pro_fine'],k:r}).evalf()
F1p,F2p,F3p,F4p,F5p,F6p,G1p,G2p,G3p,G4p,F1f,F2f,F3f,F4f,F5f,F6f,G1f,G2f,G3f,G4f = shape_coeffs('oblate',ee)
r = rr['oblate'](ee['obl_pine'])
PINE_obl = (C*(2*xi**2-1)/(xi*xib)*((I1*F1p+I2*F2p+I3*F3p+I4*F4p+(I5I6)*F5p) \
+(J1*G1p+J2*G2p+J3*G3p+J4*G4p))).subs({xib:(xi**2-1)**0.5,xi:ee['obl_pine'],k:r}).evalf()
r = rr['oblate'](ee['obl_fine'])
FINE_obl= (C*(2*xi**2-1)/(xi*xib)*((I1*F1f+I2*F2f+I3*F3f+I4*F4f+(I5I6)*F5f) \
+(J1*G1f+J2*G2f+J3*G3f+J4*G4f))).subs({xib:(xi**2-1)**0.5,xi:ee['obl_fine'],k:r}).evalf()
Crange = np.concatenate((np.linspace(0.00001,0.9,100),np.linspace(1,4,100)))
Crange = np.concatenate((Crange,np.linspace(4,100,100)))
CDC_pro_pine = []
CDC_pro_fine = []
CDC_obl_pine = []
CDC_obl_fine = []
for j in range(len(Crange)):
CVAL = Crange[j]
data = PINE_pro.subs({C:CVAL})
CDC_pro_pine.append([CVAL,data])
data = FINE_pro.subs({C:CVAL})
CDC_pro_fine.append([CVAL,data])
data = PINE_obl.subs({C:CVAL})
CDC_obl_pine.append([CVAL,data])
data = FINE_obl.subs({C:CVAL})
CDC_obl_fine.append([CVAL,data])
CDC_pro_pine = np.array(CDC_pro_pine)
CDC_pro_fine = np.array(CDC_pro_fine)
CDC_obl_pine = np.array(CDC_obl_pine)
CDC_obl_fine = np.array(CDC_obl_fine)
fig, axs = plt.subplots(2,2,constrained_layout=True,sharex=True,figsize=(7,4))
ftr = -1/((ee['pro_pine']-1)**(3/2)*np.log(ee['pro_pine']-1))
axs[0,0].scatter(CDC_pro_pine[:,0]/(1+CDC_pro_pine[:,0]),CDC_pro_pine[:,1]/(1+CDC_pro_pine[:,0]**2)*ftr,label=r'$\mathit{\xi_0 = 1.01}$')
axs[0,0].plot(rod_pine[:,0],rod_pine[:,1],c='k',label=r'$\mathit{Dabade \ et \ al., \ 2016}$',ls='--')
axs[0,0].set_ylim(-0.01,0.4)
axs[0,0].set_xlim(0.0,1.0)
axs[0,0].legend(fontsize=8,loc='lower center')
axs[0,0].title.set_text(r'$\mathit{Prolate, \ particle \ inertia}$')
axs[0,0].set_ylabel(r'$\mathit{ \frac{ {St}^{-1} \left( \Delta C_p / (C^2+1) \right) }{ \left( (\xi_0^2-1)^{3/2} \log(\xi_0-1) \right)} }$',fontsize=7,labelpad=5)
ftr = -((ee['pro_fine']-1)**(0.5)*np.log(ee['pro_fine']-1))
axs[0,1].scatter(CDC_pro_fine[:,0]/(1+CDC_pro_fine[:,0]),CDC_pro_fine[:,1]/(1+CDC_pro_fine[:,0]**2)*ftr,label=r'$\mathit{\xi_0 = 1.1}$')
axs[0,1].plot(rod_fine[:,0],rod_fine[:,1],c='k',label=r'$\mathit{Dabade \ et \ al., \ 2016}$',ls='--')
axs[0,1].title.set_text(r'$\mathit{Prolate, \ fluid \ inertia}$')
axs[0,1].set_ylim(-0.01,0.2)
axs[0,1].set_ylabel(r'$\mathit{\frac{{Re_p}^{-1} \left( \Delta C_p / (C^2+1) \right) }{ \left( (\xi_0-1)^{0.5} \log (\xi_0-1) \right)^{-1}} }$',fontsize=7,labelpad=5)
axs[0,1].legend(fontsize=8,loc='upper center')
ftr = ee['obl_pine']**2
axs[1,0].scatter(CDC_obl_pine[:,0]/(1+CDC_obl_pine[:,0]),CDC_obl_pine[:,1]/(1+CDC_obl_pine[:,0]**2)*ftr,label=r'$\mathit{\xi_0 = 1.0001}$')
axs[1,0].plot(disk_pine[:,0],disk_pine[:,1],c='k',label=r'$\mathit{Dabade \ et \ al., \ 2016}$',ls='--')
axs[1,0].title.set_text(r'$\mathit{Oblate, \ particle \ inertia}$')
axs[1,0].legend(fontsize=8,loc='upper center')
axs[1,0].set_ylim(-0.11,0.01)
axs[1,0].set_ylabel(r'$\mathit{{St}^{-1} \left( \Delta C_p / (C^2+1) \right) \xi_0^2 }$',fontsize=7,labelpad=5)
ftr = (ee['obl_fine']-1)**0.5
axs[1,1].scatter(CDC_obl_fine[:,0]/(1+CDC_obl_fine[:,0]),CDC_obl_fine[:,1]/(1+CDC_obl_fine[:,0]**2)*ftr,label=r'$\mathit{\xi_0 = 1.0001}$')
axs[1,1].plot(disk_fine[:,0],disk_fine[:,1],c='k',label=r'$\mathit{Dabade \ et \ al., \ 2016}$',ls='--')
axs[1,1].title.set_text(r'$\mathit{Oblate, \ fluid \ inertia}$')
axs[1,1].legend(fontsize=8,loc='upper center')
axs[1,1].set_ylim(-0.16,0.02)
axs[1,1].set_ylabel(r'$\mathit{{Re_p}^{-1} \left( \Delta C_f / (C^2+1) \right) (\xi_0-1)^{0.5} }$',fontsize=6.5,labelpad=5)
for j in range(2):
axs[1,j].set_xlabel(r'$\mathit{C/(C+1)}$',labelpad=5,fontsize=13)