/*** EXAMPLE: L-function of a genus 2 curve over Q ***/ /*** v1.3, December 2013, questions to [email protected] ***/ /*** ***/ /*** type \rex-gen2 or read("ex-gen2") at pari prompt to run this ***/ read("computel"); \\ read the ComputeL package \\ and set the default values default(realprecision,14); \\ set working precision; used throughout \\ larger precision needs more coefficients /*********** C: y^2+(x^3+x+1)y=x^5+x^4 (genus2, hyperelliptic) **********/ cond = 169; \\ conductor sgn = 1; \\ sign in the functional equation \\ Vector of coefficients coef = [1,-3,-2,4,0,6,0,-3,3,0,0,-8,-5,0,0,3,3,-9,-6,0,0,0,6,6,7,15,-10,0,\ -3,0,0,-6,0,-9,0,12,15,18,10,0,-9,0,-8,0,0,-18,0,-6,-7,-21,-6,-20,-6,30,\ 0,0,12,9,12,0,-1,0,0,5,0,0,6,12,-12,0,6,-9,0,-45,-14,-24,0,-30,8,0,20,27,\ 0,0,0,24,6,0,-12,0,0,24,0,0,0,12,12,21,0,28,3,18,-20,15,0,18,-6,-40,0,0,\ -30,0,15,-36,0,-12,-15,-36,0,0,-11,3,18,0,0,0,2,9,16,0,36,0,0,-18,0,-9,\ -27,36,4,0,0,-18,0,9,0,0]; /*************************************************************************/ \\ initialize L-function parameters conductor = cond; \\ exponential factor gammaV = [0,0,1,1]; \\ list of gamma-factors weight = 2; \\ L(s)=sgn*L(weight-s) initLdata("coef[k]",-146); \\ initialize the L-series data print("EXAMPLE: L-function of a genus 2 curve over Q"); print(" with 14 digits precision"); print("C: y^2+(x^3+x+1)y=x^5+x^4 (hyperelliptic)"); print("Conductor = ", conductor); print("Functional eq. = ", errprint(checkfeq())); print("L(1) = ", L(1)); print(" (check) = ", L(1,1.1)); print("L(2) = ", L(2)); print(" (check) = ", L(2,1.1));