Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
241818 views
1
r"""
2
The Hecke action on Siegel modular forms of genus 2.
3
4
AUTHORS:
5
6
- Martin Raum (2009 - 08 - 28) Initial version based on code by Nathan Ryan.
7
"""
8
9
#===============================================================================
10
#
11
# Copyright (C) 2009 Martin Raum
12
#
13
# This program is free software; you can redistribute it and/or
14
# modify it under the terms of the GNU General Public License
15
# as published by the Free Software Foundation; either version 3
16
# of the License, or (at your option) any later version.
17
#
18
# This program is distributed in the hope that it will be useful,
19
# but WITHOUT ANY WARRANTY; without even the implied warranty of
20
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21
# General Public License for more details.
22
#
23
# You should have received a copy of the GNU General Public License
24
# along with this program; if not, see <http://www.gnu.org/licenses/>.
25
#
26
#===============================================================================
27
28
from sage.misc.cachefunc import cached_method
29
from sage.misc.latex import latex
30
from sage.modular.modsym.p1list import P1List
31
from sage.rings.integer import Integer
32
from sage.structure.sage_object import SageObject
33
from psage.modform.paramodularforms import siegelmodularformg2_misc_cython
34
35
_siegelmodularformg2_heckeoperator_cache = dict()
36
37
#===============================================================================
38
# SiegelModularFormG2FourierExpansionHeckeAction
39
#===============================================================================
40
41
def SiegelModularFormG2FourierExpansionHeckeAction( n ) :
42
global _siegelmodularformg2_heckeoperator_cache
43
44
try :
45
return _siegelmodularformg2_heckeoperator_cache[n]
46
except KeyError :
47
A = SiegelModularFormG2FourierExpansionHeckeAction_class(n)
48
_siegelmodularformg2_heckeoperator_cache[n] = A
49
50
return A
51
52
#===============================================================================
53
# SiegelModularFormG2FourierExpansionHeckeAction_class
54
#===============================================================================
55
56
class SiegelModularFormG2FourierExpansionHeckeAction_class (SageObject):
57
r"""
58
Implements a Hecke operator acting on Siegel modular.
59
"""
60
61
def __init__(self, n):
62
self.__l = n
63
64
self.__l_divisors = siegelmodularformg2_misc_cython.divisor_dict(n + 1)
65
66
def eval(self, expansion, weight = None) :
67
if weight is None :
68
try :
69
weight = expansion.weight()
70
except AttributeError :
71
raise ValueError, "weight must be defined for the Hecke action"
72
73
precision = expansion.precision()
74
if precision.is_infinite() :
75
precision = expansion._bounding_precision()
76
else :
77
precision = precision._hecke_operator(self.__l)
78
characters = expansion.non_zero_components()
79
80
hecke_expansion = dict()
81
for ch in characters :
82
hecke_expansion[ch] = dict( (k, self.hecke_coeff(expansion, ch, k, weight)) for k in precision )
83
84
result = expansion.parent()._element_constructor_(hecke_expansion)
85
result._set_precision(expansion.precision()._hecke_operator(self.__l))
86
87
return result
88
89
# TODO : reimplement in cython
90
def hecke_coeff(self, expansion, ch, (a,b,c), k) :
91
r"""
92
Computes the coefficient indexed by `(a, b, c)` of `T(\ell) (F)`.
93
"""
94
character_eval = expansion.parent()._character_eval_function()
95
96
ell = self.__l
97
coeff = 0
98
for t1 in self.__l_divisors[ell]:
99
for t2 in self.__l_divisors[t1]:
100
for V in self.get_representatives(t1/t2):
101
aprime, bprime, cprime = self.change_variables(V,(a,b,c))
102
if aprime % t1 == 0 and bprime % t2 == 0 and cprime % t2 == 0:
103
try:
104
coeff = coeff + character_eval(V, ch) * t1**(k-2)*t2**(k-1)*expansion[( ch, ((ell*aprime) //t1**2,
105
(ell*bprime) //t1//t2,
106
(ell*cprime) //t2**2) )]
107
except KeyError, msg:
108
raise ValueError, '%s' %(expansion,msg)
109
return coeff
110
111
@cached_method
112
def get_representatives( self, t) :
113
r"""
114
A helper function used in hecke_coeff that computes the right
115
coset representatives of $\Gamma^0(t)\SL(2,Z)$ where
116
$\Gamma^0(t)$ is the subgroup of $SL(2,Z)$ where the upper right hand
117
corner is divisible by $t$.
118
119
NOTE:
120
121
We use the bijection $\Gamma^0(t)\SL(2,Z) \rightarrow P^1(\Z/t\Z)$
122
given by $A \mapsto [1:0]A$.
123
"""
124
if t == 1 : return [(1,0,0,1)]
125
126
rep_list = []
127
128
for x,y in P1List(t):
129
## we calculate a pair c,d satisfying a minimality condition
130
## to make later multiplications cheaper
131
(_, d, c) = Integer(x)._xgcd(Integer(y), minimal=True)
132
rep_list.append((x,y,-c,d))
133
134
return rep_list
135
136
@staticmethod
137
def change_variables((a,b,c,d), (n,r,m)):
138
r"""
139
A helper function used in hecke_coeff that computes the
140
quadratic form [nprime,rprime,mprime] given by $Q((x,y) V)$
141
where $Q=[n,r,m]$ and $V$ is a 2 by 2 matrix given by `(a, b, c, d)`
142
"""
143
return ( n*a**2 + r*a*b + m*b**2, 2*(n*a*c + m*b*d) + r*(a*d + c*b), \
144
n*c**2 + r*c*d + m*d**2 )
145
146
def _repr_(self) :
147
return '%s-th Hecke operator for Siegel modular forms' % self.__l
148
149
def _latex_(self) :
150
return latex(self.__n) + '-th Hecke operator for Siegel modular forms'
151
152