Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
2
\begin{exerciseStatement}
3
4
5
Explain how to find the general solution to each given ODE using exponential functions.
6
7
8
9
For each exponential solution using complex numbers, also provide an alternate general solution using only real numbers.
10
11
12
\begin{enumerate}[(a)]
13
\item \[ -4 \, {x'} = -10 \, {x} - 2 \, {x''} \]
14
\item \[ 0 = 243 \, {y} + 54 \, {y'} + 3 \, {y''} \]
15
\end{enumerate}
16
17
\end{exerciseStatement}
18
19
\begin{exerciseAnswer}
20
\[ {x} = c_{1} e^{\left(\left(2 i + 1\right) \, t\right)} + c_{2} e^{\left(-\left(2 i - 1\right) \, t\right)} \]\[ {x} = {\left(d_{1} \cos\left(2 \, t\right) + d_{2} \sin\left(2 \, t\right)\right)} e^{t} \]\[ {y} = k_{1} t e^{\left(-9 \, t\right)} + k_{2} e^{\left(-9 \, t\right)} \]
21
\end{exerciseAnswer}
22
23
24