<exercise masterit-seed="9633" masterit-slug="C3" masterit-name="Homogeneous second-order linear ODE">
<statement>
<p>Explain how to find the general solution to each given ODE using
exponential functions.</p>
<p>For each exponential solution using complex numbers, also provide
an alternate general solution using only real numbers.</p>
<ol>
<li>
<me> 0 = -16 \, {x'} - 2 \, {x''} - 64 \, {x} </me>
</li>
<li>
<me> 3 \, {y''} = -60 \, {y'} - 300 \, {y} </me>
</li>
</ol>
</statement>
<answer>
<me> {x} = c_{1} e^{\left(\left(4 i - 4\right) \, t\right)} + c_{2} e^{\left(-\left(4 i + 4\right) \, t\right)} </me>
<me> {x} = {\left(d_{1} \cos\left(4 \, t\right) + d_{2} \sin\left(4 \, t\right)\right)} e^{\left(-4 \, t\right)} </me>
<me> {y} = k_{1} t e^{\left(-10 \, t\right)} + k_{2} e^{\left(-10 \, t\right)} </me>
</answer>
</exercise>