<exercise masterit-seed="2204" masterit-slug="C3" masterit-name="Homogeneous second-order linear ODE">
<statement>
<p>Explain how to find the general solution to each given ODE using
exponential functions.</p>
<p>For each exponential solution using complex numbers, also provide
an alternate general solution using only real numbers.</p>
<ol>
<li>
<me> -12 \, {y'} = -36 \, {y} - 2 \, {y''} </me>
</li>
<li>
<me> -2 \, {x''} - 128 \, {x} = 32 \, {x'} </me>
</li>
</ol>
</statement>
<answer>
<me> {y} = c_{1} e^{\left(\left(3 i + 3\right) \, t\right)} + c_{2} e^{\left(-\left(3 i - 3\right) \, t\right)} </me>
<me> {y} = {\left(d_{1} \cos\left(3 \, t\right) + d_{2} \sin\left(3 \, t\right)\right)} e^{\left(3 \, t\right)} </me>
<me> {x} = k_{1} t e^{\left(-8 \, t\right)} + k_{2} e^{\left(-8 \, t\right)} </me>
</answer>
</exercise>