Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
<exercise masterit-seed="5060" masterit-slug="C3" masterit-name="Homogeneous second-order linear ODE">
2
<statement>
3
<p>Explain how to find the general solution to each given ODE using
4
exponential functions.</p>
5
<p>For each exponential solution using complex numbers, also provide
6
an alternate general solution using only real numbers.</p>
7
<ol>
8
<li>
9
<me> 3 \, {x''} = 30 \, {x'} - 75 \, {x} </me>
10
</li>
11
<li>
12
<me> 6 \, {y} - 6 \, {y'} = -3 \, {y''} </me>
13
</li>
14
</ol>
15
</statement>
16
<answer>
17
<me> {y} = c_{1} e^{\left(\left(i + 1\right) \, t\right)} + c_{2} e^{\left(-\left(i - 1\right) \, t\right)} </me>
18
<me> {y} = {\left(d_{1} \cos\left(t\right) + d_{2} \sin\left(t\right)\right)} e^{t} </me>
19
<me> {x} = k_{1} t e^{\left(5 \, t\right)} + k_{2} e^{\left(5 \, t\right)} </me>
20
</answer>
21
</exercise>
22
23
24