<exercise masterit-seed="5060" masterit-slug="C3" masterit-name="Homogeneous second-order linear ODE">
<statement>
<p>Explain how to find the general solution to each given ODE using
exponential functions.</p>
<p>For each exponential solution using complex numbers, also provide
an alternate general solution using only real numbers.</p>
<ol>
<li>
<me> 3 \, {x''} = 30 \, {x'} - 75 \, {x} </me>
</li>
<li>
<me> 6 \, {y} - 6 \, {y'} = -3 \, {y''} </me>
</li>
</ol>
</statement>
<answer>
<me> {y} = c_{1} e^{\left(\left(i + 1\right) \, t\right)} + c_{2} e^{\left(-\left(i - 1\right) \, t\right)} </me>
<me> {y} = {\left(d_{1} \cos\left(t\right) + d_{2} \sin\left(t\right)\right)} e^{t} </me>
<me> {x} = k_{1} t e^{\left(5 \, t\right)} + k_{2} e^{\left(5 \, t\right)} </me>
</answer>
</exercise>