Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
2
\begin{exerciseStatement}
3
4
5
Explain how to find the general solution to each given ODE using exponential functions.
6
7
8
9
For each exponential solution using complex numbers, also provide an alternate general solution using only real numbers.
10
11
12
\begin{enumerate}[(a)]
13
\item \[ 3 \, {x''} = 30 \, {x'} - 75 \, {x} \]
14
\item \[ 6 \, {y} - 6 \, {y'} = -3 \, {y''} \]
15
\end{enumerate}
16
17
\end{exerciseStatement}
18
19
\begin{exerciseAnswer}
20
\[ {y} = c_{1} e^{\left(\left(i + 1\right) \, t\right)} + c_{2} e^{\left(-\left(i - 1\right) \, t\right)} \]\[ {y} = {\left(d_{1} \cos\left(t\right) + d_{2} \sin\left(t\right)\right)} e^{t} \]\[ {x} = k_{1} t e^{\left(5 \, t\right)} + k_{2} e^{\left(5 \, t\right)} \]
21
\end{exerciseAnswer}
22
23
24