Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
2
\begin{exerciseStatement}
3
4
5
Explain how to find the general solution to each given ODE using exponential functions.
6
7
8
9
For each exponential solution using complex numbers, also provide an alternate general solution using only real numbers.
10
11
12
\begin{enumerate}[(a)]
13
\item \[ -60 \, {y} - 3 \, {y''} = 12 \, {y'} \]
14
\item \[ 40 \, {x'} + 2 \, {x''} = -200 \, {x} \]
15
\end{enumerate}
16
17
\end{exerciseStatement}
18
19
\begin{exerciseAnswer}
20
\[ {y} = c_{1} e^{\left(\left(4 i - 2\right) \, t\right)} + c_{2} e^{\left(-\left(4 i + 2\right) \, t\right)} \]\[ {y} = {\left(d_{1} \cos\left(4 \, t\right) + d_{2} \sin\left(4 \, t\right)\right)} e^{\left(-2 \, t\right)} \]\[ {x} = k_{1} t e^{\left(-10 \, t\right)} + k_{2} e^{\left(-10 \, t\right)} \]
21
\end{exerciseAnswer}
22
23
24