\begin{exerciseStatement}
Compute the Laplace transform \(\mathcal{L}\{y\}\) of \(y = 5 \, \delta\left(t - 5\right) - 2 \, e^{\left(5 \, t\right)} - 2 \, \mathrm{u}\left(t - 5\right) \) by using a transform table.
Then show how the integral definition of the Laplace transform to obtains same result.
\end{exerciseStatement}
\begin{exerciseAnswer}
\[
\mathcal{L}\{y\} = -\frac{2 \, e^{\left(-5 \, s\right)}}{s} - \frac{2}{s - 5} + 5 \, e^{\left(-5 \, s\right)} \]
\end{exerciseAnswer}