Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
<item ident="D2-5611" title="D2 | Laplace transforms from formula and definition | ver. 5611">
  <itemmetadata>
    <qtimetadata>
      <qtimetadatafield>
        <fieldlabel>question_type</fieldlabel>
        <fieldentry>essay_question</fieldentry>
      </qtimetadatafield>
    </qtimetadata>
  </itemmetadata>
  <presentation>
    <material>
      <mattextxml>
        <div class="exercise-statement">
          <p>
            <strong>D2.</strong>
          </p>
          <p> Compute the Laplace transform <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\mathcal{L}\{y\}" alt="\mathcal{L}\{y\}" title="\mathcal{L}\{y\}" data-latex="\mathcal{L}\{y\}"/> of <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y = -3 \, \delta\left(t - 1\right) + 2 \, e^{\left(4 \, t\right)} + 2 \, \mathrm{u}\left(t - 5\right)" alt="y = -3 \, \delta\left(t - 1\right) + 2 \, e^{\left(4 \, t\right)} + 2 \, \mathrm{u}\left(t - 5\right)" title="y = -3 \, \delta\left(t - 1\right) + 2 \, e^{\left(4 \, t\right)} + 2 \, \mathrm{u}\left(t - 5\right)" data-latex="y = -3 \, \delta\left(t - 1\right) + 2 \, e^{\left(4 \, t\right)} + 2 \, \mathrm{u}\left(t - 5\right)"/> by using a transform table. </p>
          <p> Then show how the integral definition of the Laplace transform to obtains same result. </p>
        </div>
      </mattextxml>
      <mattext texttype="text/html">&lt;div class="exercise-statement"&gt;
  &lt;p&gt;
    &lt;strong&gt;D2.&lt;/strong&gt;
  &lt;/p&gt;
  &lt;p&gt; Compute the Laplace transform &lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Cmathcal%7BL%7D%5C%7By%5C%7D" alt="\mathcal{L}\{y\}" title="\mathcal{L}\{y\}" data-latex="\mathcal{L}\{y\}"&gt; of &lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y%20=%20-3%20%5C,%20%5Cdelta%5Cleft(t%20-%201%5Cright)%20+%202%20%5C,%20e%5E%7B%5Cleft(4%20%5C,%20t%5Cright)%7D%20+%202%20%5C,%20%5Cmathrm%7Bu%7D%5Cleft(t%20-%205%5Cright)" alt="y = -3 \, \delta\left(t - 1\right) + 2 \, e^{\left(4 \, t\right)} + 2 \, \mathrm{u}\left(t - 5\right)" title="y = -3 \, \delta\left(t - 1\right) + 2 \, e^{\left(4 \, t\right)} + 2 \, \mathrm{u}\left(t - 5\right)" data-latex="y = -3 \, \delta\left(t - 1\right) + 2 \, e^{\left(4 \, t\right)} + 2 \, \mathrm{u}\left(t - 5\right)"&gt; by using a transform table. &lt;/p&gt;
  &lt;p&gt; Then show how the integral definition of the Laplace transform to obtains same result. &lt;/p&gt;
&lt;/div&gt;

</mattext>
    </material>
    <response_str ident="response1" rcardinality="Single">
      <render_fib>
        <response_label ident="answer1" rshuffle="No"/>
      </render_fib>
    </response_str>
  </presentation>
  <itemfeedback ident="general_fb">
    <flow_mat>
      <material>
        <mattextxml>
          <div class="exercise-answer">
            <h4>Partial Answer:</h4>
            <p style="text-align:center;">
              <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\mathcal{L}\{y\} = \frac{2 \, e^{\left(-5 \, s\right)}}{s} + \frac{2}{s - 4} - 3 \, e^{\left(-s\right)}" alt="\mathcal{L}\{y\} = \frac{2 \, e^{\left(-5 \, s\right)}}{s} + \frac{2}{s - 4} - 3 \, e^{\left(-s\right)}" title="\mathcal{L}\{y\} = \frac{2 \, e^{\left(-5 \, s\right)}}{s} + \frac{2}{s - 4} - 3 \, e^{\left(-s\right)}" data-latex="\mathcal{L}\{y\} = \frac{2 \, e^{\left(-5 \, s\right)}}{s} + \frac{2}{s - 4} - 3 \, e^{\left(-s\right)}"/>
            </p>
          </div>
        </mattextxml>
        <mattext texttype="text/html">&lt;div class="exercise-answer"&gt;
  &lt;h4&gt;Partial Answer:&lt;/h4&gt;
  &lt;p style="text-align:center;"&gt;
    &lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Cmathcal%7BL%7D%5C%7By%5C%7D%20=%20%5Cfrac%7B2%20%5C,%20e%5E%7B%5Cleft(-5%20%5C,%20s%5Cright)%7D%7D%7Bs%7D%20+%20%5Cfrac%7B2%7D%7Bs%20-%204%7D%20-%203%20%5C,%20e%5E%7B%5Cleft(-s%5Cright)%7D" alt="\mathcal{L}\{y\} = \frac{2 \, e^{\left(-5 \, s\right)}}{s} + \frac{2}{s - 4} - 3 \, e^{\left(-s\right)}" title="\mathcal{L}\{y\} = \frac{2 \, e^{\left(-5 \, s\right)}}{s} + \frac{2}{s - 4} - 3 \, e^{\left(-s\right)}" data-latex="\mathcal{L}\{y\} = \frac{2 \, e^{\left(-5 \, s\right)}}{s} + \frac{2}{s - 4} - 3 \, e^{\left(-s\right)}"&gt;
  &lt;/p&gt;
&lt;/div&gt;

</mattext>
      </material>
    </flow_mat>
  </itemfeedback>
</item>