Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
2
\begin{exerciseStatement}
3
4
5
Explain how to solve the following IVP.
6
7
\[ 4 \, {y} + 2 \, {y''} + 6 \, {y'} - 6 \, \delta\left(t - 3\right) = 0 \hspace{2em}
8
y(0)= 0 ,
9
y'(0)= 3 \]
10
11
Hint: \( \frac{1}{s^{2} + 3 \, s + 2} = -\frac{1}{s + 2} + \frac{1}{s + 1} \).
12
13
14
\end{exerciseStatement}
15
16
\begin{exerciseAnswer}
17
\[
18
\mathcal{L}\{y\}= \frac{3 \, e^{\left(-3 \, s\right)}}{s^{2} + 3 \, s + 2} + \frac{3}{s^{2} + 3 \, s + 2} \]\[
19
\mathcal{L}\{y\}= -\frac{3 \, e^{\left(-3 \, s\right)}}{s + 2} + \frac{3 \, e^{\left(-3 \, s\right)}}{s + 1} - \frac{3}{s + 2} + \frac{3}{s + 1} \]\[ {y} = 3 \, e^{\left(-t + 3\right)} \mathrm{u}\left(t - 3\right) - 3 \, e^{\left(-2 \, t + 6\right)} \mathrm{u}\left(t - 3\right) + 3 \, e^{\left(-t\right)} - 3 \, e^{\left(-2 \, t\right)} \]
20
\end{exerciseAnswer}
21
22
23