<exercise masterit-seed="2484" masterit-slug="D4" masterit-name="Using Laplace transforms to solve IVPs">
<statement>
<p>
Explain how to solve the following IVP.
</p>
<me> -3 \, {y''} = 18 \, {y} - 15 \, {y'} - 6 \, \delta\left(t - 3\right) \hspace{2em}
y(0)= 0 ,
y'(0)= 4 </me>
<p>Hint: <m> \frac{1}{s^{2} - 5 \, s + 6} = -\frac{1}{s - 2} + \frac{1}{s - 3} </m>.</p>
</statement>
<answer>
<me>
\mathcal{L}\{y\}= \frac{2 \, e^{\left(-3 \, s\right)}}{s^{2} - 5 \, s + 6} + \frac{4}{s^{2} - 5 \, s + 6} </me>
<me>
\mathcal{L}\{y\}= -\frac{2 \, e^{\left(-3 \, s\right)}}{s - 2} + \frac{2 \, e^{\left(-3 \, s\right)}}{s - 3} - \frac{4}{s - 2} + \frac{4}{s - 3} </me>
<me> {y} = 2 \, e^{\left(3 \, t - 9\right)} \mathrm{u}\left(t - 3\right) - 2 \, e^{\left(2 \, t - 6\right)} \mathrm{u}\left(t - 3\right) + 4 \, e^{\left(3 \, t\right)} - 4 \, e^{\left(2 \, t\right)} </me>
</answer>
</exercise>