Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
<exercise masterit-seed="2645" masterit-slug="D4" masterit-name="Using Laplace transforms to solve IVPs">
2
<statement>
3
<p>
4
Explain how to solve the following IVP.
5
</p>
6
<me> 3 \, {y''} = -27 \, {y} - 81 \, \mathrm{u}\left(t - 2\right) \hspace{2em}
7
y(0)= -2 ,
8
y'(0)= 0 </me>
9
<p>Hint: <m> \frac{1}{s^{3} + 9 \, s} = -\frac{s}{9 \, {\left(s^{2} + 9\right)}} + \frac{1}{9 \, s} </m>.</p>
10
</statement>
11
<answer>
12
<me>
13
\mathcal{L}\{y\}= -\frac{2 \, s}{s^{2} + 9} - \frac{27 \, e^{\left(-2 \, s\right)}}{{\left(s^{2} + 9\right)} s} </me>
14
<me>
15
\mathcal{L}\{y\}= \frac{3 \, s e^{\left(-2 \, s\right)}}{s^{2} + 9} - \frac{2 \, s}{s^{2} + 9} - \frac{3 \, e^{\left(-2 \, s\right)}}{s} </me>
16
<me> {y} = 3 \, \cos\left(3 \, t - 6\right) \mathrm{u}\left(t - 2\right) - 2 \, \cos\left(3 \, t\right) - 3 \, \mathrm{u}\left(t - 2\right) </me>
17
</answer>
18
</exercise>
19
20
21