Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
<exercise masterit-seed="2482" masterit-slug="F1" masterit-name="Direction fields for first-order ODEs">
2
<statement>
3
<p>
4
Use <url href="https://sagecell.sagemath.org/"/> to run the SageMath code
5
<c>t,y = var('t y'); plot_slope_field(t*y/9+t/3, (t,-5,5), (y,-5,5))</c>
6
producing the direction field for the ODE <m> {y'} = \frac{1}{9} \, {y} t + \frac{1}{3} \, t </m>.
7
</p>
8
<p>
9
Let <m>y_p</m> be the solution to the following IVP.
10
Explain how to use its direction field to approximate the
11
value of <m>y_p</m> at <m>t= 0 </m>.
12
</p>
13
<me> {y'} = \frac{1}{9} \, {y} t + \frac{1}{3} \, t \hspace{2em}
14
y( -2 )= 2 </me>
15
</statement>
16
<answer>
17
<me>y_p( 0 )\approx 1.0 </me>
18
</answer>
19
</exercise>
20
21
22