<item ident="N1-1378" title="N1 | Existence/uniqueness theorem for linear IVPs | ver. 1378">
<itemmetadata>
<qtimetadata>
<qtimetadatafield>
<fieldlabel>question_type</fieldlabel>
<fieldentry>essay_question</fieldentry>
</qtimetadatafield>
</qtimetadata>
</itemmetadata>
<presentation>
<material>
<mattextxml>
<div class="exercise-statement">
<p>
<strong>N1.</strong>
</p>
<p> Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. </p>
<p style="text-align:center;">
<img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" alt="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" title="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" data-latex="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5"/>
</p>
</div>
</mattextxml>
<mattext texttype="text/html"><div class="exercise-statement">
<p>
<strong>N1.</strong>
</p>
<p> Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. </p>
<p style="text-align:center;">
<img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%7B%5Cleft(t%20+%205%5Cright)%7D%20%7B%5Cleft(t%20-%205%5Cright)%7D%20%7By%7D%20+%20t%5E%7B2%7D%20+%201%20=%20-%7B%5Cleft(t%20+%202%5Cright)%7D%20%7By'%7D%20e%5E%7Bt%7D%20%5Chspace%7B2em%7D%20x(%200%20)=%20-5" alt="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" title="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" data-latex="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5">
</p>
</div>
</mattext>
</material>
<response_str ident="response1" rcardinality="Single">
<render_fib>
<response_label ident="answer1" rshuffle="No"/>
</render_fib>
</response_str>
</presentation>
<itemfeedback ident="general_fb">
<flow_mat>
<material>
<mattextxml>
<div class="exercise-answer">
<h4>Partial Answer:</h4>
<p style="text-align:center;">
<img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-2,+\infty)" alt="(-2,+\infty)" title="(-2,+\infty)" data-latex="(-2,+\infty)"/>
</p>
</div>
</mattextxml>
<mattext texttype="text/html"><div class="exercise-answer">
<h4>Partial Answer:</h4>
<p style="text-align:center;">
<img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-2,+%5Cinfty)" alt="(-2,+\infty)" title="(-2,+\infty)" data-latex="(-2,+\infty)">
</p>
</div>
</mattext>
</material>
</flow_mat>
</itemfeedback>
</item>