<item ident="N1-1378" title="N1 | Existence/uniqueness theorem for linear IVPs | ver. 1378"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>N1.</strong> </p> <p> Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" alt="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" title="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" data-latex="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>N1.</strong> </p> <p> Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%7B%5Cleft(t%20+%205%5Cright)%7D%20%7B%5Cleft(t%20-%205%5Cright)%7D%20%7By%7D%20+%20t%5E%7B2%7D%20+%201%20=%20-%7B%5Cleft(t%20+%202%5Cright)%7D%20%7By'%7D%20e%5E%7Bt%7D%20%5Chspace%7B2em%7D%20x(%200%20)=%20-5" alt="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" title="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5" data-latex="{\left(t + 5\right)} {\left(t - 5\right)} {y} + t^{2} + 1 = -{\left(t + 2\right)} {y'} e^{t} \hspace{2em} x( 0 )= -5"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-2,+\infty)" alt="(-2,+\infty)" title="(-2,+\infty)" data-latex="(-2,+\infty)"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-2,+%5Cinfty)" alt="(-2,+\infty)" title="(-2,+\infty)" data-latex="(-2,+\infty)"> </p> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>