<item ident="N1-8127" title="N1 | Existence/uniqueness theorem for linear IVPs | ver. 8127"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>N1.</strong> </p> <p> Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?-{\left(t - 2\right)} {\left(t - 6\right)} {y} - e^{\left(-2 \, t\right)} = {\left(t + 6\right)} {y'} e^{t} \hspace{2em} x( -5 )= -10" alt="-{\left(t - 2\right)} {\left(t - 6\right)} {y} - e^{\left(-2 \, t\right)} = {\left(t + 6\right)} {y'} e^{t} \hspace{2em} x( -5 )= -10" title="-{\left(t - 2\right)} {\left(t - 6\right)} {y} - e^{\left(-2 \, t\right)} = {\left(t + 6\right)} {y'} e^{t} \hspace{2em} x( -5 )= -10" data-latex="-{\left(t - 2\right)} {\left(t - 6\right)} {y} - e^{\left(-2 \, t\right)} = {\left(t + 6\right)} {y'} e^{t} \hspace{2em} x( -5 )= -10"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>N1.</strong> </p> <p> Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?-%7B%5Cleft(t%20-%202%5Cright)%7D%20%7B%5Cleft(t%20-%206%5Cright)%7D%20%7By%7D%20-%20e%5E%7B%5Cleft(-2%20%5C,%20t%5Cright)%7D%20=%20%7B%5Cleft(t%20+%206%5Cright)%7D%20%7By'%7D%20e%5E%7Bt%7D%20%5Chspace%7B2em%7D%20x(%20-5%20)=%20-10" alt="-{\left(t - 2\right)} {\left(t - 6\right)} {y} - e^{\left(-2 \, t\right)} = {\left(t + 6\right)} {y'} e^{t} \hspace{2em} x( -5 )= -10" title="-{\left(t - 2\right)} {\left(t - 6\right)} {y} - e^{\left(-2 \, t\right)} = {\left(t + 6\right)} {y'} e^{t} \hspace{2em} x( -5 )= -10" data-latex="-{\left(t - 2\right)} {\left(t - 6\right)} {y} - e^{\left(-2 \, t\right)} = {\left(t + 6\right)} {y'} e^{t} \hspace{2em} x( -5 )= -10"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-6,+\infty)" alt="(-6,+\infty)" title="(-6,+\infty)" data-latex="(-6,+\infty)"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-6,+%5Cinfty)" alt="(-6,+\infty)" title="(-6,+\infty)" data-latex="(-6,+\infty)"> </p> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>