<item ident="N2-2652" title="N2 | Euler's method for approximating IVP solutions | ver. 2652"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h= 0.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"/> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( -0.80 )" alt="x( -0.80 )" title="x( -0.80 )" data-latex="x( -0.80 )"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( -0.80 )" alt="y( -0.80 )" title="y( -0.80 )" data-latex="y( -0.80 )"/> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'= t^{2} x^{2} + 4 \, t^{2} y^{2} + 1 \hspace{2em} x( -1 )= 0" alt="x'= t^{2} x^{2} + 4 \, t^{2} y^{2} + 1 \hspace{2em} x( -1 )= 0" title="x'= t^{2} x^{2} + 4 \, t^{2} y^{2} + 1 \hspace{2em} x( -1 )= 0" data-latex="x'= t^{2} x^{2} + 4 \, t^{2} y^{2} + 1 \hspace{2em} x( -1 )= 0"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'= 2 \, x y^{2} + 4 \, t y - 3 \hspace{2em} y( -1 )= -1" alt="y'= 2 \, x y^{2} + 4 \, t y - 3 \hspace{2em} y( -1 )= -1" title="y'= 2 \, x y^{2} + 4 \, t y - 3 \hspace{2em} y( -1 )= -1" data-latex="y'= 2 \, x y^{2} + 4 \, t y - 3 \hspace{2em} y( -1 )= -1"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h=%200.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%20-0.80%20)" alt="x( -0.80 )" title="x( -0.80 )" data-latex="x( -0.80 )"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%20-0.80%20)" alt="y( -0.80 )" title="y( -0.80 )" data-latex="y( -0.80 )"> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'=%20t%5E%7B2%7D%20x%5E%7B2%7D%20+%204%20%5C,%20t%5E%7B2%7D%20y%5E%7B2%7D%20+%201%20%5Chspace%7B2em%7D%20x(%20-1%20)=%200" alt="x'= t^{2} x^{2} + 4 \, t^{2} y^{2} + 1 \hspace{2em} x( -1 )= 0" title="x'= t^{2} x^{2} + 4 \, t^{2} y^{2} + 1 \hspace{2em} x( -1 )= 0" data-latex="x'= t^{2} x^{2} + 4 \, t^{2} y^{2} + 1 \hspace{2em} x( -1 )= 0"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'=%202%20%5C,%20x%20y%5E%7B2%7D%20+%204%20%5C,%20t%20y%20-%203%20%5Chspace%7B2em%7D%20y(%20-1%20)=%20-1" alt="y'= 2 \, x y^{2} + 4 \, t y - 3 \hspace{2em} y( -1 )= -1" title="y'= 2 \, x y^{2} + 4 \, t y - 3 \hspace{2em} y( -1 )= -1" data-latex="y'= 2 \, x y^{2} + 4 \, t y - 3 \hspace{2em} y( -1 )= -1"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( -0.90 )\approx 0.500" alt="x( -0.90 )\approx 0.500" title="x( -0.90 )\approx 0.500" data-latex="x( -0.90 )\approx 0.500"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( -0.90 )\approx -0.900" alt="y( -0.90 )\approx -0.900" title="y( -0.90 )\approx -0.900" data-latex="y( -0.90 )\approx -0.900"/></li> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( -0.80 )\approx 0.883" alt="x( -0.80 )\approx 0.883" title="x( -0.80 )\approx 0.883" data-latex="x( -0.80 )\approx 0.883"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( -0.80 )\approx -0.795" alt="y( -0.80 )\approx -0.795" title="y( -0.80 )\approx -0.795" data-latex="y( -0.80 )\approx -0.795"/></li> </ul> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%20-0.90%20)%5Capprox%200.500" alt="x( -0.90 )\approx 0.500" title="x( -0.90 )\approx 0.500" data-latex="x( -0.90 )\approx 0.500"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%20-0.90%20)%5Capprox%20-0.900" alt="y( -0.90 )\approx -0.900" title="y( -0.90 )\approx -0.900" data-latex="y( -0.90 )\approx -0.900"> </li> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%20-0.80%20)%5Capprox%200.883" alt="x( -0.80 )\approx 0.883" title="x( -0.80 )\approx 0.883" data-latex="x( -0.80 )\approx 0.883"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%20-0.80%20)%5Capprox%20-0.795" alt="y( -0.80 )\approx -0.795" title="y( -0.80 )\approx -0.795" data-latex="y( -0.80 )\approx -0.795"> </li> </ul> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>