<item ident="N2-9631" title="N2 | Euler's method for approximating IVP solutions | ver. 9631"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h= 0.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"/> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 1.2 )" alt="x( 1.2 )" title="x( 1.2 )" data-latex="x( 1.2 )"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 1.2 )" alt="y( 1.2 )" title="y( 1.2 )" data-latex="y( 1.2 )"/> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'= 4 \, t^{2} x^{2} + 2 \, x y^{2} - 3 \hspace{2em} x( 1 )= 1" alt="x'= 4 \, t^{2} x^{2} + 2 \, x y^{2} - 3 \hspace{2em} x( 1 )= 1" title="x'= 4 \, t^{2} x^{2} + 2 \, x y^{2} - 3 \hspace{2em} x( 1 )= 1" data-latex="x'= 4 \, t^{2} x^{2} + 2 \, x y^{2} - 3 \hspace{2em} x( 1 )= 1"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'= -t^{2} y - 4 \, x y - 1 \hspace{2em} y( 1 )= -1" alt="y'= -t^{2} y - 4 \, x y - 1 \hspace{2em} y( 1 )= -1" title="y'= -t^{2} y - 4 \, x y - 1 \hspace{2em} y( 1 )= -1" data-latex="y'= -t^{2} y - 4 \, x y - 1 \hspace{2em} y( 1 )= -1"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h=%200.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%201.2%20)" alt="x( 1.2 )" title="x( 1.2 )" data-latex="x( 1.2 )"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%201.2%20)" alt="y( 1.2 )" title="y( 1.2 )" data-latex="y( 1.2 )"> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'=%204%20%5C,%20t%5E%7B2%7D%20x%5E%7B2%7D%20+%202%20%5C,%20x%20y%5E%7B2%7D%20-%203%20%5Chspace%7B2em%7D%20x(%201%20)=%201" alt="x'= 4 \, t^{2} x^{2} + 2 \, x y^{2} - 3 \hspace{2em} x( 1 )= 1" title="x'= 4 \, t^{2} x^{2} + 2 \, x y^{2} - 3 \hspace{2em} x( 1 )= 1" data-latex="x'= 4 \, t^{2} x^{2} + 2 \, x y^{2} - 3 \hspace{2em} x( 1 )= 1"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'=%20-t%5E%7B2%7D%20y%20-%204%20%5C,%20x%20y%20-%201%20%5Chspace%7B2em%7D%20y(%201%20)=%20-1" alt="y'= -t^{2} y - 4 \, x y - 1 \hspace{2em} y( 1 )= -1" title="y'= -t^{2} y - 4 \, x y - 1 \hspace{2em} y( 1 )= -1" data-latex="y'= -t^{2} y - 4 \, x y - 1 \hspace{2em} y( 1 )= -1"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 1.1 )\approx 1.30" alt="x( 1.1 )\approx 1.30" title="x( 1.1 )\approx 1.30" data-latex="x( 1.1 )\approx 1.30"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 1.1 )\approx -0.600" alt="y( 1.1 )\approx -0.600" title="y( 1.1 )\approx -0.600" data-latex="y( 1.1 )\approx -0.600"/></li> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 1.2 )\approx 1.91" alt="x( 1.2 )\approx 1.91" title="x( 1.2 )\approx 1.91" data-latex="x( 1.2 )\approx 1.91"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 1.2 )\approx -0.315" alt="y( 1.2 )\approx -0.315" title="y( 1.2 )\approx -0.315" data-latex="y( 1.2 )\approx -0.315"/></li> </ul> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%201.1%20)%5Capprox%201.30" alt="x( 1.1 )\approx 1.30" title="x( 1.1 )\approx 1.30" data-latex="x( 1.1 )\approx 1.30"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%201.1%20)%5Capprox%20-0.600" alt="y( 1.1 )\approx -0.600" title="y( 1.1 )\approx -0.600" data-latex="y( 1.1 )\approx -0.600"> </li> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%201.2%20)%5Capprox%201.91" alt="x( 1.2 )\approx 1.91" title="x( 1.2 )\approx 1.91" data-latex="x( 1.2 )\approx 1.91"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%201.2%20)%5Capprox%20-0.315" alt="y( 1.2 )\approx -0.315" title="y( 1.2 )\approx -0.315" data-latex="y( 1.2 )\approx -0.315"> </li> </ul> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>