<item ident="N2-7227" title="N2 | Euler's method for approximating IVP solutions | ver. 7227"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h= 0.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"/> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 1.2 )" alt="x( 1.2 )" title="x( 1.2 )" data-latex="x( 1.2 )"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 1.2 )" alt="y( 1.2 )" title="y( 1.2 )" data-latex="y( 1.2 )"/> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'= -2 \, t^{2} y + 4 \, t x - 3 \hspace{2em} x( 1 )= 2" alt="x'= -2 \, t^{2} y + 4 \, t x - 3 \hspace{2em} x( 1 )= 2" title="x'= -2 \, t^{2} y + 4 \, t x - 3 \hspace{2em} x( 1 )= 2" data-latex="x'= -2 \, t^{2} y + 4 \, t x - 3 \hspace{2em} x( 1 )= 2"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'= -2 \, t x^{2} + t y + 3 \hspace{2em} y( 1 )= 0" alt="y'= -2 \, t x^{2} + t y + 3 \hspace{2em} y( 1 )= 0" title="y'= -2 \, t x^{2} + t y + 3 \hspace{2em} y( 1 )= 0" data-latex="y'= -2 \, t x^{2} + t y + 3 \hspace{2em} y( 1 )= 0"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h=%200.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%201.2%20)" alt="x( 1.2 )" title="x( 1.2 )" data-latex="x( 1.2 )"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%201.2%20)" alt="y( 1.2 )" title="y( 1.2 )" data-latex="y( 1.2 )"> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'=%20-2%20%5C,%20t%5E%7B2%7D%20y%20+%204%20%5C,%20t%20x%20-%203%20%5Chspace%7B2em%7D%20x(%201%20)=%202" alt="x'= -2 \, t^{2} y + 4 \, t x - 3 \hspace{2em} x( 1 )= 2" title="x'= -2 \, t^{2} y + 4 \, t x - 3 \hspace{2em} x( 1 )= 2" data-latex="x'= -2 \, t^{2} y + 4 \, t x - 3 \hspace{2em} x( 1 )= 2"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'=%20-2%20%5C,%20t%20x%5E%7B2%7D%20+%20t%20y%20+%203%20%5Chspace%7B2em%7D%20y(%201%20)=%200" alt="y'= -2 \, t x^{2} + t y + 3 \hspace{2em} y( 1 )= 0" title="y'= -2 \, t x^{2} + t y + 3 \hspace{2em} y( 1 )= 0" data-latex="y'= -2 \, t x^{2} + t y + 3 \hspace{2em} y( 1 )= 0"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 1.1 )\approx 2.50" alt="x( 1.1 )\approx 2.50" title="x( 1.1 )\approx 2.50" data-latex="x( 1.1 )\approx 2.50"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 1.1 )\approx -0.500" alt="y( 1.1 )\approx -0.500" title="y( 1.1 )\approx -0.500" data-latex="y( 1.1 )\approx -0.500"/></li> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 1.2 )\approx 3.42" alt="x( 1.2 )\approx 3.42" title="x( 1.2 )\approx 3.42" data-latex="x( 1.2 )\approx 3.42"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 1.2 )\approx -1.63" alt="y( 1.2 )\approx -1.63" title="y( 1.2 )\approx -1.63" data-latex="y( 1.2 )\approx -1.63"/></li> </ul> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%201.1%20)%5Capprox%202.50" alt="x( 1.1 )\approx 2.50" title="x( 1.1 )\approx 2.50" data-latex="x( 1.1 )\approx 2.50"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%201.1%20)%5Capprox%20-0.500" alt="y( 1.1 )\approx -0.500" title="y( 1.1 )\approx -0.500" data-latex="y( 1.1 )\approx -0.500"> </li> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%201.2%20)%5Capprox%203.42" alt="x( 1.2 )\approx 3.42" title="x( 1.2 )\approx 3.42" data-latex="x( 1.2 )\approx 3.42"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%201.2%20)%5Capprox%20-1.63" alt="y( 1.2 )\approx -1.63" title="y( 1.2 )\approx -1.63" data-latex="y( 1.2 )\approx -1.63"> </li> </ul> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>