<item ident="N2-4689" title="N2 | Euler's method for approximating IVP solutions | ver. 4689"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h= 0.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"/> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( -1.8 )" alt="x( -1.8 )" title="x( -1.8 )" data-latex="x( -1.8 )"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( -1.8 )" alt="y( -1.8 )" title="y( -1.8 )" data-latex="y( -1.8 )"/> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'= t^{2} x - 3 \, t^{2} y + 3 \hspace{2em} x( -2 )= 1" alt="x'= t^{2} x - 3 \, t^{2} y + 3 \hspace{2em} x( -2 )= 1" title="x'= t^{2} x - 3 \, t^{2} y + 3 \hspace{2em} x( -2 )= 1" data-latex="x'= t^{2} x - 3 \, t^{2} y + 3 \hspace{2em} x( -2 )= 1"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'= -x y^{2} + 2 \, t x - 2 \hspace{2em} y( -2 )= -1" alt="y'= -x y^{2} + 2 \, t x - 2 \hspace{2em} y( -2 )= -1" title="y'= -x y^{2} + 2 \, t x - 2 \hspace{2em} y( -2 )= -1" data-latex="y'= -x y^{2} + 2 \, t x - 2 \hspace{2em} y( -2 )= -1"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h=%200.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%20-1.8%20)" alt="x( -1.8 )" title="x( -1.8 )" data-latex="x( -1.8 )"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%20-1.8%20)" alt="y( -1.8 )" title="y( -1.8 )" data-latex="y( -1.8 )"> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'=%20t%5E%7B2%7D%20x%20-%203%20%5C,%20t%5E%7B2%7D%20y%20+%203%20%5Chspace%7B2em%7D%20x(%20-2%20)=%201" alt="x'= t^{2} x - 3 \, t^{2} y + 3 \hspace{2em} x( -2 )= 1" title="x'= t^{2} x - 3 \, t^{2} y + 3 \hspace{2em} x( -2 )= 1" data-latex="x'= t^{2} x - 3 \, t^{2} y + 3 \hspace{2em} x( -2 )= 1"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'=%20-x%20y%5E%7B2%7D%20+%202%20%5C,%20t%20x%20-%202%20%5Chspace%7B2em%7D%20y(%20-2%20)=%20-1" alt="y'= -x y^{2} + 2 \, t x - 2 \hspace{2em} y( -2 )= -1" title="y'= -x y^{2} + 2 \, t x - 2 \hspace{2em} y( -2 )= -1" data-latex="y'= -x y^{2} + 2 \, t x - 2 \hspace{2em} y( -2 )= -1"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( -1.9 )\approx 2.90" alt="x( -1.9 )\approx 2.90" title="x( -1.9 )\approx 2.90" data-latex="x( -1.9 )\approx 2.90"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( -1.9 )\approx -1.70" alt="y( -1.9 )\approx -1.70" title="y( -1.9 )\approx -1.70" data-latex="y( -1.9 )\approx -1.70"/></li> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( -1.8 )\approx 6.09" alt="x( -1.8 )\approx 6.09" title="x( -1.8 )\approx 6.09" data-latex="x( -1.8 )\approx 6.09"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( -1.8 )\approx -3.84" alt="y( -1.8 )\approx -3.84" title="y( -1.8 )\approx -3.84" data-latex="y( -1.8 )\approx -3.84"/></li> </ul> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%20-1.9%20)%5Capprox%202.90" alt="x( -1.9 )\approx 2.90" title="x( -1.9 )\approx 2.90" data-latex="x( -1.9 )\approx 2.90"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%20-1.9%20)%5Capprox%20-1.70" alt="y( -1.9 )\approx -1.70" title="y( -1.9 )\approx -1.70" data-latex="y( -1.9 )\approx -1.70"> </li> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%20-1.8%20)%5Capprox%206.09" alt="x( -1.8 )\approx 6.09" title="x( -1.8 )\approx 6.09" data-latex="x( -1.8 )\approx 6.09"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%20-1.8%20)%5Capprox%20-3.84" alt="y( -1.8 )\approx -3.84" title="y( -1.8 )\approx -3.84" data-latex="y( -1.8 )\approx -3.84"> </li> </ul> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>