<item ident="X2-3195" title="X2 | Existence/uniqueness theorem for linear IVPs | ver. 3195"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>X2.</strong> </p> <p> Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?0 = -{\left(t + 2\right)} {\left(t - 5\right)} y - {\left(t + 5\right)} {y'''} e^{t} + 5 \, {y''} - e^{\left(2 \, t\right)} \hspace{2em} x( -7 )= -1" alt="0 = -{\left(t + 2\right)} {\left(t - 5\right)} y - {\left(t + 5\right)} {y'''} e^{t} + 5 \, {y''} - e^{\left(2 \, t\right)} \hspace{2em} x( -7 )= -1" title="0 = -{\left(t + 2\right)} {\left(t - 5\right)} y - {\left(t + 5\right)} {y'''} e^{t} + 5 \, {y''} - e^{\left(2 \, t\right)} \hspace{2em} x( -7 )= -1" data-latex="0 = -{\left(t + 2\right)} {\left(t - 5\right)} y - {\left(t + 5\right)} {y'''} e^{t} + 5 \, {y''} - e^{\left(2 \, t\right)} \hspace{2em} x( -7 )= -1"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>X2.</strong> </p> <p> Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?0%20=%20-%7B%5Cleft(t%20+%202%5Cright)%7D%20%7B%5Cleft(t%20-%205%5Cright)%7D%20y%20-%20%7B%5Cleft(t%20+%205%5Cright)%7D%20%7By'''%7D%20e%5E%7Bt%7D%20+%205%20%5C,%20%7By''%7D%20-%20e%5E%7B%5Cleft(2%20%5C,%20t%5Cright)%7D%20%5Chspace%7B2em%7D%20x(%20-7%20)=%20-1" alt="0 = -{\left(t + 2\right)} {\left(t - 5\right)} y - {\left(t + 5\right)} {y'''} e^{t} + 5 \, {y''} - e^{\left(2 \, t\right)} \hspace{2em} x( -7 )= -1" title="0 = -{\left(t + 2\right)} {\left(t - 5\right)} y - {\left(t + 5\right)} {y'''} e^{t} + 5 \, {y''} - e^{\left(2 \, t\right)} \hspace{2em} x( -7 )= -1" data-latex="0 = -{\left(t + 2\right)} {\left(t - 5\right)} y - {\left(t + 5\right)} {y'''} e^{t} + 5 \, {y''} - e^{\left(2 \, t\right)} \hspace{2em} x( -7 )= -1"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-\infty,-5)" alt="(-\infty,-5)" title="(-\infty,-5)" data-latex="(-\infty,-5)"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-%5Cinfty,-5)" alt="(-\infty,-5)" title="(-\infty,-5)" data-latex="(-\infty,-5)"> </p> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>