Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
All published worksheets from http://sagenb.org
Project: sagenb.org published worksheets
Views: 184312Image: ubuntu2004
︠af610eb2-a0cb-4650-adc8-d47fbd2f759ei︠ %html <h1 class="title">Sage peut interagir avec R pour faire des statistiques</h1> <p><span>Chaque copie de sage possède une copie de R, un logiciel de traitements statistiques open-source puissant et reconnu par la communauté mathématique. Il est possible d'utiliser R directement dans une cellule du Notebook: </span></p> ︡dee6c9a9-ec62-429d-ba0d-cb6f531fbebf︡{"html": "<h1 class=\"title\">Sage peut interagir avec R pour faire des statistiques</h1>\n<p><span>Chaque copie de sage possède une copie de R, un logiciel de traitements statistiques open-source puissant et reconnu par la communauté mathématique. Il est possible d'utiliser R directement dans une cellule du Notebook: </span></p>"}︡ ︠179dedfc-0a5b-4c06-b4eb-1de3d5fab9ac︠ %r x <- c(1,3,5,6,4,9,9,1,1,6,7,8,4,5,5) ︡bd51b8c1-cedb-4389-9c96-d5240068d685︡︡ ︠4f784afd-8cf4-49b8-ac80-fc2fa2bb0540i︠ %html <p>Bon, je ne suis pas un statisticien et ne fait pas de la statistique de haut vol ici. On calcule la moyenne, la varience, etc, directement en utilisant R:</p> ︡ee0fe37b-d9dc-4f94-ac00-03f2ab5c7fbd︡{"html": "<p>Bon, je ne suis pas un statisticien et ne fait pas de la statistique de haut vol ici. On calcule la moyenne, la varience, etc, directement en utilisant R:</p>"}︡ ︠bc7b7cbf-6bbe-45eb-9a51-4fca384ee481︠ %r mean(x) ︡0b17529b-7e85-40f9-b019-575398da9c69︡{"stdout": "[1] 4.933333"}︡ ︠4f68440f-8f5a-4eb4-98f7-ed74899942a4︠ %r var(x) ︡001aa78f-00b7-4bf1-a066-41f09abdbbfa︡{"stdout": "[1] 7.209524"}︡ ︠7bd9d766-fafa-4bd1-94e5-2d3a403fc54d︠ %r summary(x) ︡d0f08a57-4d65-4f78-a61c-6df4670cf08d︡{"stdout": "Min. 1st Qu. Median Mean 3rd Qu. Max. \n 1.000 3.500 5.000 4.933 6.500 9.000"}︡ ︠9f77e0dc-9f1b-4f4a-9b3c-7a06a906d8dci︠ %html <p><span>On fait ci-dessous un test-T disant que la moyenne de la population est de 5: </span></p> ︡3721d720-4962-41e8-abd3-b3a7ad0d4ca3︡{"html": "<p><span>On fait ci-dessous un test-T disant que la moyenne de la population est de 5: </span></p>"}︡ ︠e330aa3c-a24c-45d6-9bb7-693604f103d9︠ %r results = t.test(x, mu=5) results ︡3049b6c4-df59-4b46-a078-1e7ad572ba77︡{"stdout": "One Sample t-test\n\ndata: x \nt = -0.0962, df = 14, p-value = 0.9248\nalternative hypothesis: true mean is not equal to 5 \n95 percent confidence interval:\n 3.446399 6.420268 \nsample estimates:\nmean of x \n 4.933333"}︡ ︠fc55b723-c92d-4616-8000-f08ae0c53275︠ %r results['statistic'] ︡2badba07-5fee-4985-b661-aec50a838f19︡{"stdout": "$statistic\n t \n-0.09616147"}︡ ︠0dd1ba16-5a62-424c-910b-ea6119ae0e05︠ %r results['p.value'] ︡b48caf0d-4b06-4ac4-a2c9-bbf012ea90f4︡{"stdout": "$p.value\n[1] 0.9247553"}︡ ︠285606cd-10b8-4f53-9d77-585b5be1e4bfi︠ %html <h3>Intégrer R et Sage</h3> <p>Nous avons vu ci-dessus qu'il était possible d'utiliser l'interpréteur de R directement depuis une cellule de Sage. Il est également possible de faire interagir plus étroitement R et Sage:</p> ︡24231f23-2ef8-4639-9d28-a729bf0ffa1c︡{"html": "<h3>Intégrer R et Sage</h3>\n<p>Nous avons vu ci-dessus qu'il était possible d'utiliser l'interpréteur de R directement depuis une cellule de Sage. Il est également possible de faire interagir plus étroitement R et Sage:</p>"}︡ ︠3c9da583-c50b-4763-bc4b-49ea8606bbe2︠ x = r([1,3,5,6,4,9,9,1,1,6,7,8,4,5,5]) ︡53a6eb53-dc41-4071-a6df-c52a57cc1f3c︡︡ ︠ec5fa070-d601-4e14-9149-a4b2fdfc0e5d︠ r.mean(x) ︡1bf328f6-6dc8-465b-aa17-7646feafe274︡{"stdout": "[1] 4.933333"}︡ ︠bca9acf4-0919-4bf9-8c69-0ac06219abe3︠ x.var() ︡c6f6999e-875d-4c1c-b390-defc442459b1︡{"stdout": "[1] 7.209524"}︡ ︠70685d4f-074e-46f7-bdb2-6c7836a03fce︠ r.summary(x) ︡94b49882-d09f-4851-9abf-d0b5d54bf905︡{"stdout": "Min. 1st Qu. Median Mean 3rd Qu. Max. \n 1.000 3.500 5.000 4.933 6.500 9.000"}︡ ︠5cd4781d-2796-4684-81c3-7c56ac6469dai︠ %html <p><span>On fait ci-dessous un test-T disant que la moyenne de la population est de 5: </span></p> ︡e7be06da-176f-4a46-97cc-8abed5f2258e︡{"html": "<p><span>On fait ci-dessous un test-T disant que la moyenne de la population est de 5: </span></p>"}︡ ︠55bfd957-89ef-4a18-a0d1-bb937e24943c︠ results = r.t_test(x, mu=5) results ︡e4cc4051-f43d-427e-8bbb-c3a387872814︡{"stdout": "One Sample t-test\n\ndata: sage25 \nt = -0.0962, df = 14, p-value = 0.9248\nalternative hypothesis: true mean is not equal to 5 \n95 percent confidence interval:\n 3.446399 6.420268 \nsample estimates:\nmean of x \n 4.933333"}︡ ︠1ccd364d-07f6-46fa-9910-e159bd0be57bi︠ %html <p><span>On peut convertir le résultat du test en une structure de données Python (un dictionnaire) pour en explorer l'infornation de manière plus flexible:</span></p> <p>la variable testresult est maintenant un dictionnaire Python qu'il est possible d'utiliser comme n'importe quelle structure de donnée de ce langage.</p> ︡298ac77c-b767-4e80-ac8d-8c00709ecfa6︡{"html": "<p><span>On peut convertir le résultat du test en une structure de données Python (un dictionnaire) pour en explorer l'infornation de manière plus flexible:</span></p>\n<p>la variable testresult est maintenant un dictionnaire Python qu'il est possible d'utiliser comme n'importe quelle structure de donnée de ce langage.</p>"}︡ ︠7e5a72aa-8ded-4f2f-8fa5-0c2a0e965b3f︠ testresult = results._sage_() testresult ︡8a23c21c-8b2e-44be-933e-91af022dd9f0︡{"stdout": "{'_r_class': 'htest', '_Names': ['statistic', 'parameter', 'p.value', 'conf.int', 'estimate', 'null.value', 'alternative', 'method', 'data.name'], 'DATA': {'p_value': 0.92475529872458795, 'alternative': 'two.sided', 'data_name': 'sage25', 'null_value': {'_Names': 'mean', 'DATA': 5}, 'conf_int': {'conf_level': 0.94999999999999996, 'DATA': [3.4463990798025899, 6.4202675868640702]}, 'statistic': {'_Names': 't', 'DATA': -0.096161467028551301}, 'estimate': {'_Names': 'mean of x', 'DATA': 4.93333333333333}, 'parameter': {'_Names': 'df', 'DATA': 14}, 'method': 'One Sample t-test'}}"}︡ ︠ffa9c016-4637-44be-88cf-3a2bbe3ee2fa︠ print 'p-value is: ', testresult['DATA']['p_value'] print 'Statistic: %s = %s' % (testresult['DATA']['statistic']['_Names'], testresult['DATA']['statistic']['DATA']) print '%s%% C.I.: %s' % (round(100*testresult['DATA']['conf_int']['conf_level']),testresult['DATA']['conf_int']['DATA']) ︡7a6e9c6e-65da-4f0c-9162-7bab9a4ba550︡{"stdout": "p-value is: 0.924755298725\nStatistic: t = -0.0961614670286\n95.0% C.I.: [3.4463990798025899, 6.4202675868640702]"}︡ ︠36ef7277-d5d9-4610-99c3-93f1cffa5110i︠ %html <p>Il est possible d'utiliser R pour la simulation et Python pour reste:</p> <p><span>En R, rnorm(200, 5, 2) retourne un vecteur de 200 valeurs tirées d'une distribution gaussienne de moyenne 5 et d'écart-type 2.</span></p> ︡81148589-05e3-4017-ad02-0c133b974983︡{"html": "<p>Il est possible d'utiliser R pour la simulation et Python pour reste:</p>\n<p><span>En R, rnorm(200, 5, 2) retourne un vecteur de 200 valeurs tirées d'une distribution gaussienne de moyenne 5 et d'écart-type 2.</span></p>"}︡ ︠7ee232ac-aa9d-46cf-8a5d-817b6d2a9968︠ r_norm = r.rnorm(200, 5, 2) r_norm ︡25dc975b-8529-4567-b59d-5d5d73c2842f︡{"stdout": "[1] 2.932860130850042 7.019686630221097 -1.255683824281048 1.284682617292919 4.687406533398461\n [6] 4.332701977430219 6.751191342748030 7.121697101716489 5.926438605074823 6.334666794362983\n [11] 4.635204545604861 4.776158262740585 9.773172896202670 6.206230354875271 5.524138794796816\n [16] 1.993938158183552 4.484702257245935 7.071366381243096 3.619284759614675 8.077753304874742\n [21] 6.218972984020207 5.247320252027164 2.516019119684823 4.033597052001843 4.958893571987001\n [26] 3.403126682206814 5.655490158917621 7.271838898286782 3.765106457817799 5.451735091594872\n [31] 4.176481608503499 7.877050770942954 2.307803569500903 7.569826944999753 10.223064206614417\n [36] 4.901327685507820 1.935225870705978 3.283511904922625 8.360971478418904 3.976855878787579\n [41] 5.521794389631239 4.581571444603891 4.467008550497113 4.778494557810026 7.692700581136485\n [46] 5.594038459986956 4.519053718942827 5.832301491611340 5.731401564383916 4.967714648649425\n [51] 1.811666211753191 7.904763247132804 5.693298633222565 2.768379816491648 8.478469517126006\n [56] 8.072145718690999 7.630006618541160 4.429098915431492 6.163584011128266 5.380622971635888\n [61] 7.100721326806628 4.966086824247173 8.130760593831180 4.815648504831355 1.416877381503559\n [66] 1.513040533976527 6.125241602775927 5.612790766660552 3.558414126656045 9.511485767492793\n [71] 5.851324157742610 5.548342694056521 5.134226798241416 5.266050559599313 4.777542568985157\n [76] 6.022256387936848 7.154804013798771 4.140771445791568 4.067403256376745 4.328932794482435\n [81] 1.823695047721291 8.064729826025323 4.055429211775283 5.236005540210176 3.471364825012341\n [86] 6.457393789264209 5.494824775152410 5.381001231764175 5.130996327173515 7.639242191276614\n [91] 10.468845614687545 2.375220080031704 4.673200549235761 8.753786085379827 5.087739130539235\n [96] 6.062131594853822 5.080768895902694 1.974211096686897 3.756011504462642 3.493085036373910\n[101] 4.743451506993039 5.706417100711520 7.387707487817293 6.839882171968608 6.362991001974821\n[106] 4.090167877166839 5.692063290995042 6.639155776705820 4.767580327585668 1.662674019718402\n[111] 5.068210944505697 7.521537181860581 1.915789731760151 2.831255966622024 6.586507291395144\n[116] 3.604936102650397 4.640749546432859 7.029542313314467 5.580951812457584 7.364958194718141\n[121] 4.612703264794814 5.411059149403209 2.181587108537966 4.002556772307646 3.071879648808284\n[126] 8.058382122859093 5.606853605478570 5.699699081021991 4.887637035308696 7.031255412229200\n[131] 5.428258790807652 5.858763520186419 4.250640895750221 0.648944394495954 5.159199420369405\n[136] 3.447743920927558 7.677861778304395 7.101381926107556 1.820231162733710 5.430085092929261\n[141] 3.341601603761124 5.429044915448719 9.281791436631117 6.352536931571318 5.342454436616697\n[146] 2.739368600097829 3.559195797131109 2.256956048268007 1.527824244197628 5.782138357492101\n[151] 8.736381337621978 3.968425946949193 3.917634206736804 6.117988411933440 4.286253894093873\n[156] 5.204720547740065 3.064516806581130 4.748036574912142 6.934419375508805 6.966185036662761\n[161] 5.946017440217970 4.976883109005738 5.783788335010193 5.706222430681183 3.513150539961214\n[166] 7.343510303916510 2.689026331281138 6.823415881985600 4.267755832702060 8.376560923943423\n[171] 7.948308133473203 3.004540163354743 2.933666812774234 7.543954036235458 4.955392781847880\n[176] 4.307077576940843 5.507427923278904 4.804893580967775 5.779556518636309 6.465924338187170\n[181] 7.910016166193128 8.749501642241245 9.126545434210815 3.237828819836731 3.572230427006931\n[186] 5.663311542622086 5.186940952932177 5.583700151939425 7.188544347397083 3.580407511612389\n[191] 3.629980964356285 3.034240838345398 4.680429657849403 3.303505437948030 6.591872452393569\n[196] 7.500828912379446 7.046754679519861 6.350760130949962 3.762547820866622 5.413958248299800"}︡ ︠8a59b3f5-f9b9-40c7-b090-f3c042d42c45︠ r_norm.summary() ︡48938574-63d9-4ea2-bf52-52a97f8c0c82︡{"stdout": "Min. 1st Qu. Median Mean 3rd Qu. Max. \n-1.25568382428 3.97474839583 5.25668540581 5.24372022367 6.58784858164 10.46884561470"}︡ ︠31688318-8cbd-450b-8ef7-c2c0f1fff93ci︠ %html <p>Il est possible de récupérer les nombres aléatoires générés dans une structure de données python et, par exemple, de les trier avec les outils python prévus pour trier une liste</p> ︡536e7ca9-95a6-404b-bfdb-fa0a94d2850c︡{"html": "<p>Il est possible de récupérer les nombres aléatoires générés dans une structure de données python et, par exemple, de les trier avec les outils python prévus pour trier une liste</p>"}︡ ︠a8a7f343-b505-41c5-9f5d-efcf6709ed9f︠ sage_norm = sorted(r_norm._sage_()) sage_norm ︡e48d22d2-fe6a-4732-b4e3-0dae551f5196︡{"stdout": "[-1.25568382428105, 0.64894439449595398, 1.28468261729292, 1.41687738150356, 1.51304053397653, 1.52782424419763, 1.6626740197184, 1.8116662117531901, 1.82023116273371, 1.8236950477212901, 1.91578973176015, 1.93522587070598, 1.9742110966869, 1.99393815818355, 2.1815871085379701, 2.2569560482680102, 2.3078035695009, 2.3752200800317, 2.5160191196848198, 2.68902633128114, 2.7393686000978299, 2.7683798164916502, 2.8312559666220198, 2.9328601308500399, 2.9336668127742298, 3.0045401633547399, 3.0342408383453998, 3.0645168065811301, 3.07187964880828, 3.23782881983673, 3.2835119049226198, 3.3035054379480302, 3.34160160376112, 3.40312668220681, 3.44774392092756, 3.4713648250123401, 3.4930850363739099, 3.51315053996121, 3.5584141266560398, 3.5591957971311099, 3.5722304270069301, 3.5804075116123899, 3.6049361026504001, 3.6192847596146702, 3.6299809643562901, 3.7560115044626401, 3.7625478208666201, 3.7651064578178, 3.9176342067368002, 3.96842594694919, 3.9768558787875801, 4.0025567723076501, 4.0335970520018396, 4.0554292117752802, 4.0674032563767497, 4.0901678771668397, 4.1407714457915699, 4.1764816085034999, 4.2506408957502204, 4.2677558327020604, 4.2862538940938704, 4.3070775769408396, 4.3289327944824301, 4.3327019774302196, 4.4290989154314904, 4.46700855049711, 4.4847022572459396, 4.5190537189428301, 4.58157144460389, 4.6127032647948099, 4.6352045456048598, 4.6407495464328603, 4.6732005492357596, 4.6804296578494, 4.6874065333984598, 4.7434515069930399, 4.74803657491214, 4.7675803275856703, 4.7761582627405801, 4.7775425689851598, 4.7784945578100304, 4.8048935809677804, 4.8156485048313504, 4.8876370353086998, 4.9013276855078196, 4.9553927818478796, 4.9588935719869998, 4.9660868242471699, 4.9677146486494204, 4.9768831090057404, 5.0682109445057, 5.0807688959026898, 5.0877391305392301, 5.1309963271735102, 5.1342267982414196, 5.1591994203693998, 5.1869409529321802, 5.2047205477400604, 5.2360055402101802, 5.2473202520271602, 5.2660505595993099, 5.3424544366167002, 5.3806229716358898, 5.3810012317641798, 5.4110591494032096, 5.4139582482998003, 5.4282587908076501, 5.4290449154487197, 5.4300850929292599, 5.4517350915948697, 5.4948247751524102, 5.5074279232789003, 5.52179438963124, 5.5241387947968201, 5.5483426940565197, 5.5809518124575801, 5.5837001519394196, 5.5940384599869599, 5.6068536054785696, 5.6127907666605497, 5.6554901589176199, 5.6633115426220897, 5.6920632909950397, 5.6932986332225699, 5.6996990810219899, 5.70622243068118, 5.7064171007115201, 5.73140156438392, 5.7795565186363103, 5.7821383574920997, 5.7837883350102004, 5.8323014916113403, 5.8513241577426101, 5.8587635201864199, 5.9264386050748197, 5.94601744021797, 6.0222563879368503, 6.0621315948538204, 6.1179884119334398, 6.1252416027759304, 6.16358401112827, 6.2062303548752702, 6.2189729840202101, 6.3346667943629802, 6.3507601309499604, 6.3525369315713203, 6.3629910019748204, 6.4573937892642101, 6.4659243381871701, 6.5865072913951401, 6.5918724523935701, 6.6391557767058202, 6.7511913427480303, 6.8234158819855999, 6.8398821719686103, 6.9344193755088002, 6.9661850366627602, 7.0196866302211003, 7.0295423133144697, 7.0312554122291999, 7.0467546795198599, 7.0713663812430996, 7.1007213268066298, 7.1013819261075604, 7.1216971017164896, 7.1548040137987696, 7.1885443473970803, 7.2718388982867799, 7.3435103039165099, 7.3649581947181399, 7.3877074878173001, 7.5008289123794496, 7.5215371818605803, 7.5439540362354602, 7.5698269449997504, 7.6300066185411604, 7.63924219127661, 7.6778617783043996, 7.6927005811364904, 7.87705077094295, 7.9047632471328004, 7.9100161661931301, 7.9483081334732004, 8.0583821228591006, 8.0647298260253208, 8.0721457186910008, 8.0777533048747401, 8.1307605938311802, 8.3609714784189002, 8.3765609239434191, 8.4784695171259994, 8.7363813376219799, 8.7495016422412508, 8.7537860853798293, 9.1265454342108097, 9.2817914366311207, 9.5114857674928004, 9.77317289620267, 10.223064206614399, 10.468845614687501]"}︡ ︠58fd173c-6ff8-4c9b-af87-dd2223912d08i︠ %html <p>On peut ensuite utiliser les possibilités de visualisation de Sage:</p> ︡a05ceb5b-5f7e-4b9e-b194-be20f359c610︡{"html": "<p>On peut ensuite utiliser les possibilités de visualisation de Sage:</p>"}︡ ︠17f0758d-6b19-4058-bd51-f25de3ad9bdd︠ list_plot(sage_norm, xmin=-2) ︡03286e48-4d1a-4e67-ac4f-9386f768434f︡{"html": "<font color='black'><img src='cell://sage0.png'></font>"}︡